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Abstract—In this paper, a nonlinear adaptive speed controller 

for permanent magnet linear synchronous motors based on a 

newly developed adaptive recursive Backstepping control ap-

proach for a permanent magnet synchronous motor drive is dis-

cussed and analyzed. The Backstepping technique provides a 

systematic method to address this type of problem. It combines 

the notion of Lyapunov function and a controller procedure re-

cursively.  The adaptive Backstepping control approach is uti-

lized to obtain the robustness for mismatched parameter uncer-

tainties. The overall stability of the system is shown using 

Lyapunov stability theorem. The simulation results clearly show 

that the proposed scheme can track the speed reference. 

Keywords— PMLSM; Parameter estimation; Adaptive 

Backstepping Control; Speed Control. 

I.  INTRODUCTION 

Permanent magnet linear synchronous motors (PMLSMs) 
have been widely used for industrial robots, machine tools, 
semiconductor manufacturing equipment, automatic 
inspection machines etc. [1] The main features of PMLSM are 
high force density, low losses, high dynamic performance and 
most importantly, high positioning precision associated with 
mechanical simplicity [2], [3]. However since mechanical 
transmission devices are eliminated, the effects of model 
uncertainties such as parameter variations and external 
perturbation in PMLSM drives are directly transmitted to the 

load [1]. Even worse, the load force is always unknown. All 
these factors make controller design for a PMLSM difficult 
when high speed and high precision are required in the real 
application. 

The vector control technique (field-oriented control) is one 
of the most important closed loop techniques for AC machines 
in variable speed applications. [4] Using this control 
technique, the torque and flux can be decoupled so each can 
be controlled separately. However, for a higher performance 
requirement such as robots and machine tools, this method 
may be not sufficient during the speed transient. This led to 
some research in PMLSM vector control algorithm using 
nonlinear control theory [4], [5].   

Nonlinear control algorithms thus become a natural 
solution for controlling the PMLSM. Recently, with the rapid 
progress in power electronics, microprocessors, especially 
digital signal processors (DSPs), and modern control theories, 
many researchers have aimed to develop nonlinear control 
methods for the PMLSM, and various algorithms have been 
proposed, e.g., adaptive control [6], [7], [9], robust control [8], 
[10], sliding-mode control [11], [12], input–output 
linearization control [13], and intelligent control [13], [14], 
[15]. These algorithms have improved the control performance 
of PMLSM from different aspects. 
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The technical proposed in our work is to control design 

law for the PMLSM to achieve high statics and dynamics 
performance. This technique is based on the Backstepping 
technique which establishes a controller procedure recursively 
to build a systematic and robust control law asymptotically 
stable according to the Lyapunov theory of stability [4]. The 
influence of the change some parameters and of the 
perturbation of charge can be greatly reduced by the 
introduction of adaptive law, in order to ensure high accuracy 
speed control. 

II. PMLSM SYSTEM 

The dynamics of PMLSM can be described as follows 
[17,18]: 
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Where id, iq and v are the state variables which represent 
direct-axis current, quadrature-axis current and linear speed, 
respectively, and ud, uq the direct-axis and quadrature-axis 
primary voltage components, respectively, M is the total mass 
of load, Bm the viscous damping coefficient, Rs the primary 
winding resistance, Ld, Lq the direct-axis and quadrature-axis 
primary inductors, respectively, ѱ the permanent magnet flux, 
τ the polar pitch, and FL is the load force [19]. 

III. FUNDAMENTALS THEOR OF BACKSTEPPING CONTROL 

The recursive backstepping control method is suitable for 
strict-feedback systems that are also known as “lower triangu-
lar”[20,21]. An example of strict-feedback systems is: 
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Where Rxn  for 3,2,1n are the system states, 

Ru is the control input and RRxf nn :)( are known 

functions. The objective is to design a state feedback control 

law such that  0,, 321 xxx as 0t . Similarly to the 

integrator backstepping case, 

Step1 the idea is to use the state variable 2x as an input for 

the stabilization of 1x Consider the Lyapunov function 

2
11

2

1
xV  .The derivative of 1V  along the trajectory of 1x is 

computed as: 
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The objective of this step is to find a control law 

)( 12 x with 0)0(2  , such that when )( 122 xx  then 

)()( 1111 xWxV  where 1W is a positive definite function 

for every Rx 1 . An obvious choice would be to remove the 

effect of the function )( 11 xf and inject a stabilizing feedback 

term. Thus, we pick: 

111112 )()( xkxfx   (6) 

Where 1k is a positive gain. This choice yields 

2
111 xkV  .Denote the error )( 1222 xxe    

Step2 Using the new coordinate 2e the system given in (4) 

can be written as: 
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The implementation of the derivative )( 12 x does not re-

quire a differentiator since: 
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design step is to determine a pseudo control ),( 213 ex with 
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An obvious choice would be: 

22212121213 ),()(),( ekexfxxex    (10) 

Where 2k is a positive constant. In this case 
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Step 3 Similarly to 2
 the computation of 3

  does not 

require a differentiator. Using 
2
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Lyapunov function one has: 
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The choice of u  is:  
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Where 3k  is a positive constant. This choice yields: 
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IV.  ADAPTIVE BACKSTEPPING CONTROLLER DESIGN 

The control objective is to design a recursive adaptive con-

trol system and make the output track the reference speed. Its 

basic method is to decompose a complex nonlinear system into 

subsystems whose number is less than the system order and 

then design Lyapunov functions and virtual amount for every 

subsystem by backstepping reverse recursive designs until the 

whole controller designed completely [16]. 
It is obvious that the dynamic model of PMSM is highly 

nonlinear because of the coupling between the speed and the 
stator currents. According to the vector control principle, the 
direct axis current id is always forced to be zero in order to 
orient all the linkage flux in the d axis and achieve maximum 
torque per ampere. 

vve ref 1 . (15) 

And its derivative is: 

vve ref  1 . (16) 

The Lyapunov stability function defined as: 
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Where, 1k is the closed-loop feedback constant. The speed 

control tracking is achieved if one defines the following 
stabilizing functions: 
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qsi , dsi are the references currents. Substituting (19) into 

(18) yields 

2
111 ekV  . (20) 

Thus the virtual control is asymptotically stable. Since the 

parameters  rF  , sR  and sL  are unknown we must use their 

estimate values ( rF̂  , sR̂  and sL̂ ) in (19). Thus, let us define 
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Step 2 The error currents can be defined as: 
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Where qrefi , drefi  are the virtual currents of precedent 

step. 

For the recursive control and according to the equations 

(21), (22) and (16), the 1e  can be rewritten as: 
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From (22) and (3), the time derivatives of tracking error 
currents are rewritten as: 
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To analyze the stability of this system we propose the 
following Lyapunov function as: 
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Where 1n , 2n and 3n are positive design constants of 

adaptive gains. 
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According to (23), (24) and (25), the derivative of 2V can 

be rewritten as: 
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If the following d-q axes control voltage are selected: 
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Hence the adaptation laws as follows: 
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Therefore, substituting (27) and (28) into (26), we are able 
to obtain: 
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So the system is globally asymptotically stable in the 
presence of parametric uncertainties. 

V. NUMERICAL SIMULATION AND ANALYSIS 

In order to validate the theoretical analysis and to establish 
the effectiveness of the adaptive Backstepping control of 
PMLSM drive, digital simulation at different operating 
conditions of the system drive are presented. The simulation 
was performed with the MATLAB–Simulink software 
environments using the motor parameters listed in Table 1. 

TABLE I.  PMLSM PARAMETERS 

Parameters Value 

Primary Winding Resistance 1.32Ω 

Direct-Axis Primary Inductance 11mH 

Quadrature-Axis Primary Inductance 11mH 

Permanent Magnet Flux 0.65Wb 

Mass of the Primary Part 20kg 

 
Fig. 1. Block diagram of PMLSM drive using adaptive backstepping control. 
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Polar Pitch 30mm 

Viscous Damping Coefficient 2Ns/m 

 

Fig. 2 shows the system response when using the proposed 
nonlinear adaptive Backstepping controller. Reference speed 
changes from 5m/s with change of direction movement at 
t=5s. Load force applied is change from 0N to 100N at t=3s 
and from 100N to 0N at t=7s. The uncertainties of the 
parametric model are defined as follows during the simulation, 
the uncertainty term of the stator resistance is increased from 
1.32Ω to 2Ω and the stator inductive is increased from 11 mH 
to 15 mH. 

The Fig. 2 (a) indicates the reference linear speed of the 
motor and the actual linear speed. From Fig. 2 (a), it can be 
seen that the linear speed of the motor can rapidly track the 
reference linear speed with small stability error, fast response 
and small overshoot. Fig. 2(b) shows the variation of 
electromagnetic force as the load force changes. From Fig. 
2(b), it can be seen that the motor has fast force response. Fig. 
2(c) shows the wave of rotor current in d-q frame. In Fig. 2(c), 
d-axis current id is zero, which satisfies the control scheme 
id=0 and the q-axis current, iq is proportional to the load force. 
Figs.2 (d), 2(e), 2(f) plots the parameter estimations with the 
actual values of them, in the figs 2(d, e, f) all the parameter 
estimates converge to their true values and their variations 
applied. 

 

 

     
(2a) 

     
 (2b) 

 
 (2c) 

  
 (2d) 

 
 (2e) 

 
 (2f) 

Fig. 2. Simulated responses of proposed adaptive backstepping control 

system due to stepe speed command at case (a) current response. (b) 

electromagnetic force (c) load force estimated (d) resistance estimated 

(e) inductance estimated (f). 

VI. CONCLUSION 

In this paper, an adaptive backstepping controller is 
presented in order to accommodate the nonlinearities and 
uncertainties. The design of backstepping control for the speed 
control of a PMLSM has been done. The virtual control states 
of the PMLSM drive have been identified using recursive 
method and stabilizing laws are developed using Lyapunov 
stability theory. The proposed controller has been analyzed 
using MATLAB/Simulink software. The simulation results 
show its effectiveness at tracking a reference speed under 



Recent Innovations in Mechatronics (RIim) Vol 6. (2019) No 1.  

DOI: 10.17667/riim.2019.1/1. 

 
parameter uncertainties and nonlinearities, the adaptation law 
is able to follow the parametric variation. The control strategy 
is a reliable effective control method. 
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