
Recent Innovations in Mechatronics (RIiM) Vol. 3. (2016). No. 1-2.

 DOI: 10.17667/riim.2016.1-2/9.

Simulation and Formal Verification for Improving

Safety of PLC Programs

Joel Galvão

MEtRICs Research Center, University of Minho

Campus of Azurém, 4800-058

Guimarães, Portugal

José Machado

Mechanical Engineering Department,

MEtRICs Research Center, University of Minho

Campus of Azurém, 4800-058

Guimarães, Portugal

jmachado@dem.uminho.pt

Abstract—The use of analysis techniques for improving

quality of software for industrial controllers is widely used.

Mainly Simulation and Formal Verification can be used as

complementary techniques improving dependability of

mechatronic systems behavior. In this paper there are used

Simulation and Formal Verification for guaranteeing safe

software for Programmable Logic Controllers, mainly related

with using Function blocks of IEC 61131-3 standard. For

studying, simulating and verifying behavior of those blocks are

used timed automata, as modeling formalism, and UPPAAL, as

tool for simulation and Formal Verification purposes.

Keywords—IEC 61131-3, Simulation, Formal Verification,

Dependable Mechatronic Systems

I. INTRODUCTION

There are several techniques to analyses this type of

systems, but Simulation by MiL (Model-in-the-Loop) and

Formal Verification by Model Checking [1] two possible

methods to achieve the aim secure command specification [2].

Same researchers believe that Simulation is considerably

better because is possible to study if the developed code

effectively perform the task needed, and if necessary realize

same corrections according to the needs. Although was same

disadvantages [3], such as, just a part of the domain of

possible behaviours of the controller is tested.

One the other hand, the formal verification by Model

Checking techniques make possible to test if the developed

system respond to the project specifications in all the domain

of possible behaviours of the controller, and the controller

never reach a deadlock state, and is has been said that model

checking is the only know method to ensure that the code is

without any error [4]. Nevertheless, was the need to use logic

that same consider difficult to utilize and understand [5].

The two techniques (Simulation by MiL and Formal

Verification by Model Checking) the granularity of the models

is very important. This fact leads to the objective of this

research, that focuses on developing models for the behavior

of the function blocks defined by the standard IEC 61 131-3

[6], taking into account a methodology that combines the

advantages of Simulation by MiL and Formal Verification by

Model Checking using the same models, to allow a more

careful safety analysis of the command specification of PLC

(Programmable Logic Controllers).

Considering simulation, one of the pioneers in this area is

the work proposed by Baresi in 1997 [7]. There are same

commercial software’s like Arena and AutoMod, but this

applications consider little about the logic behind the control

therefor they cannot be effectively used to test command

specifications [8]. The paper presented by reference [9], that

demonstrates a technique to simulate and visual verify, that

begins with the code written in Ladder Diagram, one of the

IEC 61 131-3 languages, using finite state automata [10].

There are several works [7] [11] that use the formalism

Discrete Event System Specification [12], this works try to

reduce the time need to simulate a system. In [7] they present

an inverse methodology that uses data from time-stamped

signal history and a PLC input/output signal table extracted

from the existing production system to create the simulation

models. In the other hand the article [11] demonstrate the

advantages of using templates to generate de models.

In the point of view of Formal Verification by Model

Checking, this method was first applied to control systems by

Moon in 1992 [13]. This technique was them utilized by a

great deal of authors, but the formalisms used to specify the

system behavior, the method the properties are written and the

applications used are different [14][15] [16] [17] [18][19]

The work group of reference [20] present investigation

using NuSMV [21]. The properties are specified in

computation tree logic[22] or Linear Temporal Logic [23] ,

and the code is written in Structured Text , other of the IIEC

61 131-3 languages. The work focus on the modulation of

time in a realistic manner, to accomplish that they developed

models for the function block TON (Time ON delay) defined

by the IEC 61 313-3 standard [6].

Other technique is proposed by [24], again using model

checking based in models created in BIP (Behavior,

Recent Innovations in Mechatronics (RIiM) Vol. 3. (2016). No. 1-2.

 DOI: 10.17667/riim.2016.1-2/9.

Interactions, Priorities) [25]. In this article are proposed

models for the Program Organization Unit define by the IEC

61 131-3 [6] standard, once more with especial attention to the

function block TON. To verify properties is used the D-Finder

[26], that allow detecting deadlock and other type of

behaviours. This techniques do not consider time constraints,

that turn the analyses limited [27].

The investigators in [28] propose a methodology that uses

program code written in sequential function charts , another of

the IEC 61 131-3 languages, that is than converted to Timed

Automata [29] and from the project specifications are

formulated affirmations to verify in the models utilizing TCTL

(Timed Computation Tree Logic) [30] (Fig. 1). All the

process for the modulation to the verification are realized on

the application UPPAAL [31]. They propose a model for the

function block TON, because they consider the modulation of

the controller behaviour has to be as close as possible to what

happens in the equipments. On the other hand reference [32]

propose a technique to convert code written in Function

Blocks Diagram to Timed Automata were they consider

models for the Program Organization Units more particularly

functions and function blocks.

In this paper is considered a methodology to make safety

analyses of command specification of industrial controllers,

more precisely PLC that tries to combine de advantages of

simulation and formal verification, using to describe the

behaviours of mechatronic system the formalism timed

automata in the application UPPAAL, as displayed in Fig. 1.

Fig. 1. Analyses methodology applied in this paper

For this approach, it is considered the specification

developed in SFC (Sequential Function Chart). Also, the

methodology for creating the global model of the system in

Timed Automata, for simulation and formal verification

purposes is proposed.

In order to achieve the goals proposed for this work, this
paper is organised as follows: section 2 proposes a case study,
illustrating the approach and, also presents the formal
controller’s specification taking into account the intended
behaviour for the system; section 3 deals with some work
hypothesis, mainly concerning the translation of the
specification to timed automata, in order to achieve the task of

simulation and formal verification, using the UPPAAL
software; and, finally, there are presented some conclusions
and future work, in section 4.

II. CASE STUDY

A. Specification of the controller

In this work, the automatic system used as case study is a
car barrier, to be used in parking lot, schematically represented
in Fig. 2. This automatic system is actuated by one motor with
two directions of movement: one controls the movement with
direction “up” (M_UP) and another controls the movement
with direction “down” (M_D). Besides that, the system has a
set of sensors: one detects the presence of one car at a time
(s1) and two other sensors detect the barrier position, “s_up”
on the up position and “s_d” on the down
position

Fig. 2. Schematic representation of the car barrier, with respective sensors

and actuators.

The input are: the sensor “si” responsible for detects
presence of car; the sensor “s_up” that detects the barrier in
the up position up; and the sensor s_down that has the task to
detect the down position of the barrier.

In the other hand, the system was to output that are the
orders to open the barrier (M_UP), and to close it (M_D).

The controller behavior are: when appears a car, the barrier
must move up and when disappears the car, the barrier must
move down. If, in some moment, a new car appears the barrier
must go up and so on. This intended behavior is described on
the Fig. 2 formalized by a SFC.

Consequently, when is no car detected in sensor the barrier
must be closed (corresponding to down position) that
corresponds to the initial position considered for the system.
This way, all the Boolean conditions associated to all the
transitions of this model correspond to rising or falling edges
of the mentioned sensors.

It is intended that this specification be implemented in a
PLC, which program will be written considering Ladder
language and Functions blocks proposed in IEC 61131-3 [6]
Because this work is devoted to the presentation and
verification of the behavior correspondent to rising and falling

Recent Innovations in Mechatronics (RIiM) Vol. 3. (2016). No. 1-2.

 DOI: 10.17667/riim.2016.1-2/9.

edges, this subject will be treated with focused special
attention.

Fig. 3. Sequential Function Charts of the comportment described before.

B. Translation of the controller specification to Ladder and

Function blocks

The translation of the presented specification, to PLC
programming language defined in [6], considers two distinct
parts: one concerns the translation of the dynamics of the
model according methodology proposed in [2]. Concerning
the behavior of the rising and falling edges there are
considered the respective comportment defined on the
standard. In this case, the behavior intended is as follows:
there are two edge detection types, one used for transition of
the logic value 0 to 1 (rising edge), and other that does the
opposite recording (falling edge).

To model this, the rising edge behavior is described in
Fig.4.

 LOCK FUNCTION_B END_

CLK := MEM

MEM NOT ANDCLK := Q

END_VAR

0= :BOOL : MEM

VAR_RETAIN

END_VAR

BOOL : Q

VAR_OUTPUT

END_VAR

BOOL :CLK

VAR_INPUT

R_TRIG LOCK FUNCTION_B

Fig. 4. Rising edge behavior [6] .

The code demonstrates that if input signal (“CLK”), that
represents the variable that is intended to be recorded, the state

changes, there is an internal variable (“MEM”) that keeps the
value of “CLK” in every scan cycle. That information is not
wasted because is recycled in the output (Q) calculation in the
next PLC scan cycle. When “Q” has the logic value 1 means
that the “CLK” has made the rising edge changeover [6].

Nevertheless, sometimes the recording need is different.
Some cases the need is to record the moment where a signal
changes from Boolean value 1 to 0. This corresponds to the
situation corresponding to the falling edge, which behavior is
described and presented in Fig. 5.

LOCKFUNCTION_B END_

CLK NOT := MEM

MEM NOT ANDCLK NOT := Q

END_VAR

1= :BOOL : MEM

VAR_RETAIN

END_VAR

BOOL : Q

VAR_OUTPUT

END_VAR

BOOL :CLK

VAR_INPUT

F_TRIG LOCK FUNCTION_B

Fig. 5. Falling edge behavior [6].

In this case the code is made for saving the moment when

variable that we want to study changes from de logic value 1

to 0. As in the rising edge there is one input (“CLK”), one

memory variable (MEM), but this time records the negation of

CLK every PLC scan cycle. When CLK and MEM are zero, Q

will be one. This has meaning that the analyzed variable

changed from one to zero.

Concerning the specification presented in Fig. 3, there are

considered both rising and falling edges. This way, those

Boolean values will be calculated as demonstrated above.

III. SIMULATION AND FORMAL VERIFICATION OF THE

SPECIFICATION

In order to perform the simulation and formal verification it

was followed the approach proposed in for the translation of

SFC to Timed Automata (TA) [33], for obtaining the timed

automata model.

Also, it has been considered the modeling of the

comportment of the controller. For this, a modular method has

been followed for obtaining the global model to be simulated

and formally verified in UPPAAL.

The simulation techniques can be classified by SiL

(Software-in-the-Loop), MiL, HiL (Hardware-in-the-Loop),

and LT (laboratory testing).

Recent Innovations in Mechatronics (RIiM) Vol. 3. (2016). No. 1-2.

 DOI: 10.17667/riim.2016.1-2/9.

Fig. 6. Simulation tecniques

All these simulation techniques have the particularity of not

test all the space behavior of the controller, making it

impossible to assert its effectiveness to one hundred percent.

In this investigation, is considered a simulation technique

using models (MIL), either the program or to the physical part

of mechatronic closed-loop system. This technique is

generally used in early phases of development of new process

equipment. No need for special equipment, just are cheaper

than before. When developed in an appropriate environment,

and be able to simulate, it is also feasible to verification by

model checking, which ensures analysis of all the controller

behavior space.

The models attempt to interact with each other in the same

way as mechatronic systems interact in reality. In order to

achieve this purpose, a charge model is required to manage the

order in which they are executed and how they interact. First,

there are two major groups of models, representing the

behavior of the PLC and a group which react as in the process.

The interaction between the two parts of the model is made

through variables. the process variables every PLC cycle are

assigned to the internal variables of the controller, and this

data will run its internal code, which will calculate the outputs.

This information is again transmitted to the process controller

through the allocation of variables to their corresponding

values of the process.

It must be highlighted that the main problem for performing

simulation and formal verification is not the creation of the

modules that compose the global model in TA, but the

synchronization of the evolution of the modules. This is

because it must be considered the internal PLC scan and the

changing of the logical values of the variables must be

guaranteed according the correct functioning of the PLC. For

this purpose it was created a model for the management of all

other modules, in order to guarantee the intended correct

verification. The modelling of all system, in one only module,

is not achievable and cannot be proposed as a methodology for

solving problems of this kind.

In order to illustrate the model proposed for the rising and

falling edges is presented, in figure 5 the TA model of the

rising edge and falling edge of the sensor s1.

Fig. 1. Rising edge and falling edge models, of the sensor s1, developed in

TA, to be formally verified with UPPAAL.

These modules (one for each edge) correspond to the

behaviors presented in figures 3 and 4, respectively [25].The

values that are assigned to the variables are directly obtained

from what is described in those figures, but another variable

(synchronization message “FB_E”) is considered in the model.

In fact, the synchronization, that is possible to see in the

model of figure 5, is necessary due to the synchronization of

the evolution of all models considered in the global model.

Figure 6 illustrates the existing relation between some

modules considered for the global model of the system.

Fig. 2.Schematic synchronization between modules of the global TA

model, used in UPPAAL, for formal verification purposes.

In fact, this relation between the modules makes possible

that the values of variables are obtained in the equivalent

moments that they correspond to the dynamics of the program

execution in a PLC.

Figure 7 illustrates how it has been developed with parts of

each module considered in figure 6.

Recent Innovations in Mechatronics (RIiM) Vol. 3. (2016). No. 1-2.

 DOI: 10.17667/riim.2016.1-2/9.

Fig. 3. Illustration of synchronization between modules of the global TA

model, used in UPPAAL, for formal verification purposes.

Let’s explain how the model has been developed in order to

accomplish the desired behavior for the Function blocks

considered (the rising and falling edges).

At beginning, when the model starts its evolution, the initial

location of the module 1 (manager of all modules, figure 7)

starts evolution and sends a synchronization message to

module 2.

Module 2 models the behavior of the controller (figure 7)

and the received message from manager module allows staring

the respective evolution. It has been considered a monotask

and sequential controller with, at least, three steps in the scan

cycle: inputs reading, program execution and outputs

updating.

After the step inputs reading, on the model 2, be performed

this module sends a message (START_PE) to model 3 that

will be responsible for the starting of the program evolution

model.

The beginning of the evolution of the module corresponding

to the program of the PLC has several steps, but the first one

considered is the step concerning the calculation of the values

corresponding to the modules of the rising and falling edges

(module 4, figure 7). This evolution will occur in this precise

moment and never more during the model evolution, unless

that a new cycle of the PLC happens again.

When the evolution of the program ends, this is sent a

message to the module corresponding to the PLC behavior, in

order to be updated the outputs. After this, the evolution of the

model is done by allowing evolution of the modules

corresponding to the physical plant models.

IV. CONCLUSION

When developing a controller specification, the changing
of logical value of discrete behavior variables is one of most
common needs of modeling, namely the rising edge and
faLling edge of a Boolean variable. The implementation of

this behavior, in industrial controllers, more precisely in
programmable logic controllers is by using IEC 61131-3
function blocks.

This means that the simulation and formal verification of
the specification of the described behaviors is one of the most
important tasks, in order to obtain safe and reliable
controllers’ software to be implemented in physical
controlling devices, such as programmable logic controllers or
others, commonly used in industry.

With this global modeling approach, it is possible to
consider the behavior of controllers’ variables in a very
realistic way, obtaining a global model to be simulated and
verified. This global model considers, also, the behavior of the
plant, allowing to prove more behavior properties of the
system. The use of UPPAAL an timed automata formalism,
making possible to take the modeling of time into account, is
crucial when models of the plant are considered because
physical components behave in a non-deterministic way and
always it is needed to consider their evolution in time.

Future works in this domain will consider controlled
distributed systems and details on modelling those systems,
mainly because of more or less complexity of the respective
controllers.

ACKNOWLEDGMENT

The authors are grateful to MEtRICs Research Center
Support for realization of this project.

REFERENCES

[1] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model
checking using satisfiability solving,” Form. Methods Syst. Des.,

vol. 19, no. 1, pp. 7–34, 2001.

[2] J. M. R. Galvão, “Conversão sistemática do comportamento
definido nos blocos funcionais da norma IEC 61 131-3 para

autómatos finitos temporizados,” University of Minho, 2015.

[3] J. J. T. Kleijn, M. A. Reniers, and J. E. Rooda, “Analysis of an
industrial system,” Form. Methods Syst. Des., vol. 22, no. 3, pp.

249–282, 2003.

[4] Y. Zhang, Y. Dong, H. Hong, and F. Zhang, “Code Formal
Verification of Operation System,” Int. J. …, vol. 2, no. December,

pp. 10–18, 2010.

[5] J. Campos and J. Machado, “A Specification Patterns System for
Discrete Event Systems Analysis,” Int. J. Adv. Robot. Syst., vol. 10,

p. 1, 2013.

[6] International Electrotechnical Commission, “IEC International
Standard IEC 61131-3,” Program. Control., vol. Part 3, 2003.

[7] S. C. Park, M. Ko, and M. Chang, “A reverse engineering approach

to generate a virtual plant model for PLC simulation,” Int. J. Adv.
Manuf. Technol., vol. 69, no. 9–12, pp. 2459–2469, 2013.

[8] L. Baresi, S. Carmeli, A. Monti, and M. Pezzè, “PLC programming

languages: A formal approach,” Proc. Autom., vol. 98, 1998.

[9] C. M. Park, S. M. Bajimaya, S. C. Park, G. N. Wang, J. G. Kwak,

K. H. Han, and M. Chang, “Development of virtual simulator for
visual validation of PLC program,” in Computational Intelligence

for Modelling, Control and Automation, 2006 and International

Conference on Intelligent Agents, Web Technologies and Internet

Recent Innovations in Mechatronics (RIiM) Vol. 3. (2016). No. 1-2.

 DOI: 10.17667/riim.2016.1-2/9.

Commerce, International Conference on, 2006, p. 32.

[10] A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland, “Finite
state automata and simple recurrent networks,” Neural Comput.,

vol. 1, no. 3, pp. 372–381, 1989.

[11] M.-S. Ko, D. Chang, G.-N. Wang, and S. C. Park, “The Template
Model Approach For PLC Simulation In An Automotive Industry.,”

in ECMS, 2012, pp. 306–312.

[12] B. P. Zeigler, “DEVS representation of dynamical systems: Event-
based intelligent control,” Proc. IEEE, vol. 77, no. 1, pp. 72–80,

1989.

[13] I. Moon, G. J. Powers, J. R. Burch, and E. M. Clarke, “Automatic
verification of sequential control systems using temporal logic,”

AIChE J., vol. 38, no. 1, pp. 67–75, 1992.

[14] H. Guéguen and J. Zaytoon, “On the formal verification of hybrid
systems,” Control Eng. Pract., vol. 12, no. 10, pp. 1253–1267, 2004.

[15] J. M. Machado, “Influence de la prise en compte d’un modèle de

processus en vérification formelle des Systèmes à Evénements
Discrets,” Universidade do Minho, 2006.

[16] N. Sharygina, J. Browne, F. Xie, R. Kurshan, and V. Levin,

“Lessons learned from model checking a NASA robot controller,”
Form. Methods Syst. Des., vol. 25, no. 2–3, pp. 241–270, 2004.

[17] E. M. Hahn, A. Hartmanns, H. Hermanns, and J.-P. Katoen, “A

compositional modelling and analysis framework for stochastic
hybrid systems,” Form. Methods Syst. Des., vol. 43, no. 2, pp. 191–

232, 2013.

[18] R. Passerone, J. R. Burch, and A. L. Sangiovanni-Vincentelli,
“Refinement preserving approximations for the design and

verification of heterogeneous systems,” Form. Methods Syst. Des.,

vol. 31, no. 1, pp. 1–33, 2007.

[19] S. Nadjm-Tehrani and J.-E. Strömberg, “Formal verification of

dynamic properties in an aerospace application,” Form. Methods

Syst. Des., vol. 14, no. 2, pp. 135–169, 1999.

[20] B. F. Adiego, D. Darvas, E. B. Vinuela, J.-C. Tournier, V. M. G.

Suárez, and J. O. Blech, “Modelling and Formal Verification of

Timing Aspects in Large PLC Programs,” in Proc. of IFAC World
Congress, 2014.

[21] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A

new symbolic model verifier,” in Computer Aided Verification,
1999, pp. 495–499.

[22] T. Hafer and W. Thomas, “Computation tree logic CTL* and path

quantifiers in the monadic theory of the binary tree,” in Automata,

Languages and Programming, Springer, 1987, pp. 269–279.

[23] P. Wolper, “Temporal logic can be more expressive,” Inf. Control,

vol. 56, no. 1, pp. 72–99, 1983.

[24] R. Wang, Y. Guan, L. Liming, X. Li, and J. Zhang, “Component-

based formal modeling of PLC systems,” J. Appl. Math., vol. 2013,

2013.

[25] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-

time components in BIP,” in Software Engineering and Formal

Methods, 2006. SEFM 2006. Fourth IEEE International Conference
on, 2006, pp. 3–12.

[26] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis, “D-finder: A

tool for compositional deadlock detection and verification,” in
Computer Aided Verification, 2009, pp. 614–619.

[27] M. Zhou, H. Wan, R. Wang, X. Song, C. Su, M. Gu, and J. Sun,

“Formal component-based modeling and synthesis for PLC
systems,” Comput. Ind., vol. 64, no. 8, pp. 1022–1034, 2013.

[28] M. Perin and J.-M. Faure, “Building meaningful timed models of

closed-loop DES for verification purposes,” Control Eng. Pract.,
vol. 21, no. 11, pp. 1620–1639, 2013.

[29] R. ; Alur and D. Dill, “Automata for modeling real-time systems,”

Proc. seventeenth Int. Colloq. Autom. Lang. Program., pp. 322–335,
1990.

[30] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in dense

real-time,” Inf. Comput., vol. 104, no. 1, pp. 2–34, 1993.

[31] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a Nutshell,” Int.

J. Softw. Tools Technol. Transf., vol. 1, no. 1, pp. 134–152, 1997.

[32] E. P. Enoiu, D. Sundmark, and P. Pettersson, “Model-based test
suite generation for function block diagrams using the uppaal model

checker,” in Software Testing, Verification and Validation

Workshops (ICSTW), 2013 IEEE Sixth International Conference
on, 2013, pp. 158–167.

[33] M. Uzam, “A general technique for the PLC-Based implementation

of RW supervisors with time delay functions,” Int. J. Adv. Manuf.
Technol., vol. 62, no. 5–8, pp. 687–704, 2012

