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Abstract—With the spreading of motion analysis decisions to 

invest into a new system demand scientific reference applications. 

The aim of the present systematic review is to reveal the 

biomechanical scientific applications of OptiTrack motion 

capture systems and to overview documented usage conditions 

and purposes. Six major scientific literature databases were used 

(PubMed, PubMed Central, ScienceDirect, IEEE Xplore, PLOS 

and Web Of Science). An OptiTrack camera system had to be 

used for human or biologically related motion capture. A total of 

85 articles were included, 4 out of which dealt with the validation 

of OptiTrack systems and 81 utilized the system for 

biomechanical analyses. The data analysed and extracted from 

the system validation studies included: description of the 

validated and the reference system, measured features and 

observed errors. The data extracted from the utilizing studies 

also included: OptiTrack application, camera type and 

frequency, marker size, camera number, data processing 

software and the motion studied. The review offers a broad 

collection of biomechanical applications of OptiTrack motion 

capture systems as scientific references for certain motion 

studies. The review also summarizes findings on the accuracy of 

the systems. It concludes that the method descriptions of system 

usage are often underspecified 
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I.  INTRODUCTION 

The application of optical motion capture systems has 
become increasingly widespread in the fields of entertainment 
[1], biomechanics [2] and sports sciences [3]. The operation of 
these systems is based on stereophotogrammetry where the 
three-dimensional coordinates of points on an object subject to 
measurements are produced in two or more photographic 
images taken from different positions. These systems consist 
of cameras, markers and processing software.  

The spreading of motion analysis means that in addition to 
market-leading expensive high-end systems, such as Vicon 
(Oxford metrics, UK), cheaper camera systems appeared that 
were not specifically meant for scientific purposes, but 
sneaked in scientific motion labs. One such brand is OptiTrack 
(NaturalPoint, Corvallis, OR, USA), which was applied to the 

field of biomechanics from animation motion capture. Its main 
applications currently include virtual reality (VR), robotics, 
movement sciences and animations [4]. It has taken time for 
OptiTrack to become a scientifically accepted and used system 
as motion labs already rely on their own well-established high-
end motion capture systems. The spreading of cheaper systems 
also requires validation studies that compare the accuracy of 
new systems with scientific gold standard systems, 
representing an approach which researchers can relate to. 
Other possible important technical aspects of adequacy in a 
specific application are capture volume, minimum detectable 
marker size, frequency and resolution of the motion capture 
system. 

Sometimes in biomechanical studies, selection of the 
motion analysis system is questioned when a system different 
from the gold standard Vicon systems is used. The scientific 
acceptance and usage of motion capture systems are measured 
by the number of studies in which they are utilized. The first 
aim of the present review is to investigate and organize the 
documented usage of OptiTrack systems through scientific 
database searches to serve as a collection of scientific 
biomechanical application references of the brand. The second 
aim is to summarize the results of system validation studies. 
The present study focuses on biomechanical applications in 
which qualitative measurements are performed mostly on 
human motion. The camera system parameters and data 
processing methodology are collected from the selected papers 
to detail the common application methods. 

II. METHODS 

A. Search strategy 

1) Identification of materials 
The goal of the search was to find studies in which the 

OptiTrack motion capture system was used for human motion 
analysis. We defined the search strategy using the simple 
keywords: ‘optitrack’ or ‘opti-track’. These general keywords 
ensured that the search covered every application of the 
system.  
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We ran the search query in six databases, PubMed, 
PubMed Central, ScienceDirect, IEEE Xplore, PLOS and Web 
Of Science, in September 2017. There were no publication 
date restrictions, and each publication was considered up to 
and including the date of the search. General guidelines for 
systematic reviews defined by the PRISMA statements [5] 
were considered during this research. 

2) Screening of materials 

Online database search results were screened by title, their 
abstract and their methods sections. In cases where OptiTrack 
usage was not clear from the abstract, the paper was searched 
for ‘OptiTrack’ or ‘Opti-Track’ to find occurrences and to 
reveal the camera system used in the study. 

3) Eligibility check of materials 
Papers were included for data extraction if they reported 

actual quantitative measurements of human movement. 
Exclusion criteria were applied to papers where robot motion 
tracking was analysed or where the purpose of human motion 
tracking was to enable a VR application or some other 
application without the need for precise motion capture. The 
inclusion criteria (TABLE I. ) applied were that an OptiTrack 
system had to be used in the paper for human or biologically 
related motion capture. Journal papers and conference 
proceedings were both included, with the only exception of 
abstract publications whose conditions were evaluated 
manually at this phase. The language of the papers included 
was specified as English, and papers that reported 
measurements with OptiTrack systems were downloaded for 
further processing following a file-naming convention 
involving the paper title. This strategy eliminated duplicated 
studies at the downloading stage to prevent duplicates from 
being downloaded multiple times. For paper data 
management, we used Mendeley Desktop v1.16.3 (Mendeley 
Ltd.). The full text of the downloaded papers was screened for 
study purposes and motion capture-related methodology and 
was classified into the following groups: 

 research on system accuracy, 

 biomechanical measurements, 

 robotics-related motion tracking, 

 VR application and 

 other. 

TABLE I.  INCLUSION AND EXCLUSION CRITERIA 

 Inclusion criteria Exclusion criteria 

Study type Journal papers 
Books 

Conference 

proceedings 

Abstracts 
Posters 

Language English Other languages 

OptiTrack camera 

system usage 

Human or biologically 

related motion capture 

performed 

No measurement 

performed 

B. Data extraction 

Data extraction was performed on papers which were 
related to biomechanical measurements and those which 
involved studies into the accuracy of the systems. Being the 
main interest, research works on system accuracy and studies 
applying biomechanical measurements were further processed 
for data extraction. From system accuracy studies, we 
obtained the following key information: 

 type and camera number of the validated OptiTrack 
system, 

 type and camera number of the reference system, 

 marker size, 

 sampling frequency, 

 description of reference measures and 

 observed errors. 

Possible bias of the results in system accuracy studies was 
assessed by their conflict of interest statements. 

In the biomechanical measurement group, the following 
key points were collected into a table to explore the scientific 
usage of OptiTrack systems for biomechanical analyses: 

 OptiTrack camera system application in the study 
(study concept), 

 the camera system type used and the sampling 
frequency, 

 camera number, 

 applied post-processing software and 

 motion studied. 

Out of the biomechanical analyses carried out using 
motion capture systems, gait analysis was the most widely 
performed analysis. Therefore, the details of this application 
category were further studied and the following key points 
were extracted from papers pertaining to this category: 

 subjects studied, 

 walking speed, 

 marker set, 

 gait parameters calculated and 

 comparisons performed on the data. 

The distribution of the obtained data was statistically 
analyzed. The incidence rate of the different possibilities of 
the extracted data items was calculated. 
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III. RESULTS 

A. Literature search results 

Fig. 1 demonstrates the complete PRISMA workflow, 
paper selection and grouping with paper numbers at each 
stage. The database searches clearly indicate that the number 
of yearly publications mentioning OptiTrack camera systems 
has progressively increased since 2011. For the period prior to 
2011, there were only a few publications in the searched 
databases, among which Oakeshott [6] was the first reported 
study that incorporated OptiTrack in 2003 to validate another 
approach for stride monitoring. The annual breakdown of the 
number of publications is as shown in Fig. 2. 

The overall number of papers in the six databases searched 
was 412, which also includes duplicates. After the removal of 
duplicates, the number of papers was reduced to 248. Not 
every paper involved the use of an OptiTrack system or any 
other motion capture system, as some papers mentioned the 
camera system only in a different context. Out of this total, 
107 papers were not relevant to the study as they failed to 
include biologically related experiments; instead, they 
discussed other related issues, e.g. pure robotic applications or 
robotic applications, where the camera system was only used 
for approximating the positions of a person [7]. For eligibility 
assessment, 141 studies were selected, and these involved 
biologically related experiments. 

 

Fig. 1. PRISMA flow diagram of systematic review process. 

 

Fig. 2. Annual breakdown of the number of publications including Optitrack 

in the databases searched (as in September 2017). 

We screened the selected papers, enabling them to be 
grouped into distinguishable application purposes, among 
which quantitative biomechanical human motion analyses or 
other quantitative biological motion analyses were our primary 
interest groups. The second interest group included studies 
that investigated the accuracy of OptiTrack systems. Further 
groups that were not processed were VR applications and 
robotics-related motion tracking. Some of the studies did not 
fit any of these categories, e.g. using the system for calibrating 
and validating another device [8]–[10], augmented reality 
games [11] or human activity recognition [12]. 

B. OptiTrack system accuracy evaluation 

The database search revealed four papers [13]–[16] that 
aimed to validate the accuracy of OptiTrack systems. The 
main approach of three research studies [13]–[15] was to 
measure the known distance of rigidly fixed markers using the 
OptiTrack camera system and to evaluate the acquired 
deviations from the theoretical distance. Aurand et al. 
measured small relative marker displacement in different 
regions of a large capture volume [16]. TABLE II.  
summarizes the key information obtained by the comparisons 
described in these studies. 

Thewlis et al. [13] compared the precision of a 12-camera 
Flex:V100R2 OptiTrack system and a 12-camera Vicon MX-
F20 camera system at 100 Hz with respect to static and 
dynamic linear accuracy (marker distance method) and gait 
kinematics. To do this, they simultaneously measured the 
marker coordinates placed on anatomical landmarks and 
calculated joint angles. They found that no absolute 
percentage errors were as large as 1% from the known 
distance, although they concluded that for gait kinematics, the 
OptiTrack system had a comparable accuracy to Vicon; 
however, in the knee and hip angles, they found differences 
larger than 3° between the two systems [13].  
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Carse et al. [14] compared a 8-camera Optitrack 
Flex:V100R2 system (100 Hz) with a 8 camera Vicon 612 
(120 Hz) and a 12-camera Vicon MX systems (100 Hz) using 
the marker distance method. The measured mean vector 
magnitudes of four markers on a rigid cluster characterized the 
systems by coefficients of variation, the largest disagreement 
between systems and the trajectory gaps. In their study, the 
Optitrack system obtained results which were similar to those 
of the Vicon 612 system; however, Vicon MX proved to be 
superior. The largest disagreements of mean vector 
magnitudes resulted at 2.2% for Optitrack vs. ViconMX, and 
2.1% for Vicon 612 vs. Vicon MX. The coefficients of 
variation were as follows: Vicon MX 0.3%, Vicon 612 2.5%, 
Optitrack 2.3% [14].  

Hansen et al. [15] tested a 10-camera OptiTrack 250e 
camera system (250 Hz) using the marker distance method 
under static and dynamic conditions with stationary marker 
clusters and by the motorized rotation of a marker cluster. The 
measurement accuracy was characterized by nine marker 
distances of static and rotating rigid bodies. The reference 
system was an 8-camera Vicon M2 camera system (250 Hz). 
They concluded that the system is sufficiently reliable for 
biomechanical analyses and other related fields, as the raw 
difference between the measurements for each system was 
only marginal (avg: 0.58 (SD: 0.25) mm for the nine distances 
ranging from 64 to 500 mm) [15]. 

Aurand et al. [16] have studied the accuracy of a 42 
camera OptiTrack Prime 41 system (180 Hz) measuring the 
small relative displacement of a single marker. The 
measurement was performed in different locations of a large 
measurement area. 3D error was measured compared to a 
ThorLabs LTS300 linear motion stage, which moved the 
marker with 5 µm off-axis error in a maximum 100 mm range. 
They concluded that the worst error of these relative motions 
is less than 200 µm in 97% of the 10.4 mm x 6.5 mm 
measurement area, and reaches 1 mm error only at the edges 
of the measurement area. 

Hansen [15], Carse [14] and Thewlis [13] declared no 
conflict of interest that could positively influence the outcome 
measures of their study. On the other hand in [16], the 
manufacturer of the OptiTrack systems provided the reference 
equipment and technical guidance to the measurements, which 
might result in a positive bias of the outcome measures. 

TABLE II.  SUMMARY OF OPTITRACK ACCURACY EVALUATION STUDIES. 

Study Validated 

system 

Reference 

system 

Measured 

feature 

Observed errors 

[13] 12-camera 

OptiTrack 

Flex:V100R2 
Sampling: 

100 Hz 

 

12-camera 

Vicon 

MX-F20 
Sampling: 

100 Hz 

Detected 

marker 

distances, 
angular gait 

parameters. 

Marker 
diameter: n/a 

Below 1% 

deviation from 

known length; the 
largest relative 

differences in gait 

angular parameters 
were below 4°. 

 

[14] 8-camera 

OptiTrack 
Flex:V100R2 

Sampling: 

100 Hz 

12-camera 

Vicon 
MX 

Sampling: 

100 Hz, 8-

Mean vector 

magnitudes 
of four 

markers on a 

rigid cluster; 

The largest 

disagreement from 
Vicon MX 2.2%; 

largest standard 

deviation of 3.69 

 camera 

Vicon 612 

Sampling: 

120 Hz 

 

mean 

coefficient of 

variation.  

Marker 

diameter: 

16.5 mm 

mm in detected 

marker distance 

and mean 

coefficient of 

variation of 2.28 

for OptiTrack. 

[15] 10-camera 
OptiTrack 

250e 

Sampling: 
250 Hz 

8-camera 
Vicon M2 

Sampling: 

250 Hz 

Marker 
distances of 

static and 

rotating rigid 
bodies. 

Marker 

diameters: 
seven of 14 

mm and 

three of 9 
mm 

Raw differences 
between the 

measurements for 

each system are 
0.58 (0.25) mm. 

[16] 42 OptiTrack 

Prime 41 
cameras 

Sampling: 

180 Hz 

ThorLabs 

LTS300 
linear 

motion 

stage (on-
axis error 

of 5 µm) 

Relative one 

axial 
displacement 

of a single 

marker. 
Marker 

diameter: 

15.9 mm 

Less than 200 µm 

in 97% of the 
capture volume 

C. Biomechanical applications  

The results of the application analysis for the key points 
described in the papers discussing biomechanical motion 
analysis are summarized in Table S1.The application fields are 
fairly diverse, even within biomechanical analyses. The most 
popular biomechanical application of OptiTrack systems is 
gait analysis. In the present context, papers involving the use 
of the term ‘gait analysis’ and those studies for which the 
authors measured lower limb kinematics during walking or 
running are considered for gait analysis applications. Out of 
the extracted papers, 29.6% (24 papers) of them belong to this 
category [17]–[40]. Papers in another large group (13.5%, 
eleven papers) also involved measuring lower limb kinematics 
in activities other than walking, e.g. squat, stance or step-down 
tests [6], [41]–[50]. Another large application area is upper 
limb motion tracking (18.5%, fifteen papers), where one or 
more upper limb joint angles or positions are measured [9], 
[10], [51]–[63]. This group includes finger movement tracking 
applications as well. 

A smaller number of papers (approximately 7%, five 
papers) reported the use of the OptiTrack camera system to 
track the motion of an external device, extending its 
measurement capabilities (e.g. an ultrasound imaging device 
[64], [65], inertial sensors [66], [67] or vibrations of a plate 
through which a person walks [68]). Seven studies (8.6%) 
involved spinal motion analysis or detected postural changes 
or spinal movements on healthy participants [69]–[71] or 
cadavers using the system [72]–[75]. In two studies the focus 
was on measuring head position [76], [77]. One paper reported 
the use of the OptiTrack motion capture system to track 
mandibular movement [78]. 

Table S2 summarizes the results of further data extraction 
on gait analysis, which is the most widespread application of 
biomechanical studies. Table S2 presents details about the 
participants studied, the marker sets applied, the parameters 
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calculated and the bases of comparisons in the gait studies 
using OptiTrack camera systems. 

D. Camera system type and camera number 

Camera types and numbers including sampling frequencies 
are listed in Table S1 (Column: Camera type and frequency). 
The majority of the studies failed to specify the camera type 
used (55.5%, 45 papers). In ten papers, FlexV100 cameras 
were used [18], [21], [27]–[30], [39], [55], [78], while twelve 
papers reported the use of Flex:V100R2 (manufacturer’s 
rebranded name: Flex 3) cameras [9], [10], [41], [43], [46], 
[47], [64], [68], [70], [79]–[81]. A Flex 13 camera system was 
used in five studies [10], [36], [37], [44], [66], S250e cameras 
in two [26], [82] while V120 [83] were each used in a single 
study. The latest series of camera types were used in five 
papers: Prime13 in [58], [62], [84] and Prime41 in [56], [77] 

Many papers (34 papers, 1.9%) also failed to specify the 
sampling frequency. Out of the papers that failed to specify 
the camera type and sampling frequency, there was an overlap 
in 28.4% of the entire set (23 papers). Nineteen papers 
reported a 100-Hz sampling frequency with respect to their 
camera system [17], [19], [27], [38], [39], [41], [43], [46], 
[47], [51], [52], [55], [57], [63], [64], [70], [75], [76], [78]–
[80], [85]–[87], one reported 30 Hz [54], and fifteen studies 
sampled the motion at 120 Hz [26], [34], [36], [44], [45], 
[48]–[50], [56], [60], [62], [65], [71], [82], [84]. 150 Hz [88], 
180 [77] and 240 Hz [33] sampling frequencies were applied 
by single papers. Nine papers [19], [34], [46], [52], [64], [84]–
[87] specified a low-pass filter for the measured coordinates of 
tracking markers with cut-off frequencies ranging from 1 up to 
10 Hz.  

The number of cameras utilized for the different setups are 
as displayed in Fig. 3. In approximately 25.9% of the studies, 
the authors failed to specify the number of cameras used in the 
motion capture system, while in most studies 6, 10 or 12 
cameras were used. The largest number of cameras used in the 
studies study was 24 [72], [79]–[81], [87]. 

A part of the camera systems are the markers used which 
also influence the accuracy of a measurement. Only nine 
papers specified the used marker size other than the system 
validation studies. Common marker sizes are 20 mm [18], 
[27], [28] and 11 mm [46], [48], [64], [69] while 15 mm [62], 
14 mm [47] 10 mm [21], 9.5 mm [65] and 8 mm [56] markers 
are also used. 

 

Fig. 3. Number of cameras used. 

E. Processing software 

In processing the measured data and calculating the 
parameters studied, many papers specified the processing 
software (Table S1 Column: Data processing software). The 
most common motion-capture data processing software was 
Matlab, which was included in twenty-nine papers with 
individual scripts [9], [20], [25], [26], [28], [33], [36], [39], 
[41]–[44], [48]–[50], [56]–[58], [64]–[67], [70], [82]–[84], 
[89]–[91]. Nine papers mentioned the use of Visual3D [18], 
[19], [21], [27]–[30], [85], [86], which is one of the 
manufacturer’s recommendations for biomechanical analysis 
with OptiTrack products [4]. One author [51] used a custom 
LabVIEW (National Instruments Inc., Austin, Texas) 
software. 

IV. DISCUSSION 

The aim of the study is to investigate and organize the 
documented usage of OptiTrack systems through scientific 
database searches to serve as a collection of scientific 
biomechanical application references of the brand and to 
summarize the results of system validation studies. Our results 
show that an increasing number of publications discuss the use 
of OptiTrack systems each year, demonstrating their rising 
popularity in scientific applications (Fig. 2). However, the use 
of Vicon as the gold standard leads the way with 878 
publications just in 2017 (until September), which was 
observed on 14/09/2017 in the six databases searched (the 
overall number of publications with Vicon in these databases 
is 10,439).  

This increasing usage may be owing to the increasing 
number of system accuracy studies (TABLE II. ) proving the 
comparable accuracy of OptiTrack systems with high-end 
Vicon camera systems [13]–[16]. Two of these studies [13], 
[14] validated the Flex:V100R2 cameras, which are now 
rebranded to the still available small volume Flex 3 cameras 
[4]. The larger resolution S250e camera used in the third paper 
[15] is no longer available. A later higher resolution OptiTrack 
camera, the Prime series Ethernet cameras have also been 
scientifically validated, and they offer similar or higher 
accuracy [16]. Based on the validation studies, due to the joint 
effect of different system parameters and validation methods, 
marker size does not show a clear influence on accuracy; 
however, large camera resolution positively influences 
accuracy.  

Some of the newer cameras (Flex 13, Prime series 
cameras) and many of the validated Flex:V100R2 and even 
older retired Flex:V100 cameras are being used for 
biomechanical measurements (Table S1). Typically tracked 
motions have already been discussed, but Table S1 also details 
the application purposes of these motion studies. The data 
collected clearly indicate the broadness of the application 
scope of OptiTrack camera systems. Human movement 
analyses which utilize the OptiTrack system cover diverse 
lower limb, upper limb, spinal motion and special 
(mandibular) motions, among which the most widespread 
biomechanical application is gait analysis (S1 Table). 
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According to Table S2, the reported gait analysis studies 
cover different test subjects (pre- and post-surgery knee 
osteoarthritis patients, healthy subjects, athletes and diabetic 
neuropathy patients). The applied walking speed was mostly 
self-paced, and some studies involved the application of 
constant-speed treadmill walking or running trials. The marker 
sets described mostly included custom marker configurations. 
Most of the parameters considered in these studies were 
related to lower limb joint kinematics. 

Regarding the papers studied, a common deficiency was 
that the majority of them failed to specify the camera type and 
sampling frequency used (Table S1). The resolution of the 
available OptiTrack cameras in September 2017 ranges from 
0.3 to 4.1 megapixels, and the frame rate ranges from 100 to 
360 Hz [4]. In contrast, Vicon camera resolution ranges from 
1.3 to 16 megapixels and the maximum frame rate ranges from 
120 Hz to 2000 Hz [92]. Also, only a few papers specified the 
size of the markers used; and the specified ones range from 
9.5 to 20 mm. These parameters, particularly the camera 
resolution, can significantly influence the acquired coordinate 
accuracy and thus the reliability of the measured data; 
therefore, it is essential to include them in the documentation 
of research articles. It is also important to document the 
number of cameras as it may also influence accuracy, as 
reported by Eichelberger [93]. A description of the number of 
cameras is also important from the perspective of the motion 
studied, as certain camera configurations and a minimal 
number of cameras may be required for specific tasks; e.g. gait 
analysis with only two cameras (e.g. a V120 dual-camera 
assembly) would provide questionable tracking continuity 
with respect to marker placement. Out of the reported camera 
counts, 6, 8- and 12-camera setups were the most common 
ones (Fig. 3). This may be owing to the fact that the Flex 
series of cameras are connected to a computer via a special 
six-slot USB hub. In cases such as these, the motion labs may 
be equipped with as many cameras as there are slots that they 
possess on one or two hubs. 

Only seven papers [18], [19], [21], [27]–[30] used the 
Visual3D software to process the marker coordinates into the 
desired motion (mostly joint angular) parameters (S1 Table). 
Most studies (14) performed the calculations using custom 
Matlab scripts (S1 Table). However, the software used may 
have the least effect on the outcome measures as the 
calculations (e.g. calculation of joint angles from the specified 
marker coordinates) of the applied models are more important, 
which is usually not described in the papers. 

A. Limitations of this study 

This systematic review was not registered and thus no 
review protocols are available online or otherwise. Other 
limitations can arise from the fact that only six major scientific 
databases were used in the search for materials, and no 
additional sources. The OptiTrack system was a measurement 
tool in the individual biomechanical studies of diverse 
research subjects, thus the assessment of the risk of bias on 
their results could not be performed related to the goal of this 
systematic review. 

V. CONCLUSION 

In the present study, we aimed to present an overview of 
the growing number of biomechanical applications of 
OptiTrack camera systems, which are slowly emerging as 
competitors of the gold standard Vicon in scientific 
applications. The second aim was to present an overview of 
the results of validation studies which tested the precision of 
OptiTrack camera systems compared to that of Vicon systems. 
The paper presents many applications in which OptiTrack 
camera systems were used for quantitative biomechanical, 
mostly human related, measurements. Several of the common 
OptiTrack motion capture setups and data processing software 
tools popular in this field were presented. According to the 
study, the majority of the papers that were included under-
document their system setups (camera type, frame rate, marker 
size and number of cameras). These shortcomings prevent the 
sharing of valuable information on system accuracy and 
measurement repeatability, and these should be subsequently 
included in scientific papers to improve the repeatability and 
reproducibility of the studies. 

 

Supplementary materials are available online in a public data 

repository: https://github.com/motionlab-mogi-

bme/Application-of-OptiTrack-motion-capture-systems-in-

human-movement-analysis 
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