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Abstract—To perform second generation wavelet 

transformation in digital signal processing is a common 

operation. Most obvious way to carry out this task is by program 

cycle management. Computational software usually executes 

direct matrix algebraic operations much faster, compared to 

cycles. Avoiding organizing cycles, can increase the processing 

speed by magnitudes. This paper introduces transformation 

matrixes to execute the key steps of wavelet transformation: 

filtering and downsampling.  By the employment of the described 

transformational matrixes, wavelet transformation and filtering 

of two dimensional images or discrete datasets could be easier 

and faster. 

 
Index Terms— Signal processing algorithm, Digital signal 

processing, Wavelet transformation, Discrete wavelet transform, 
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I. INTRODUCTION 

RADITIONAL signal processing transformations like 

Fourier transformation and even first generation wavelet 

transformations work well for infinite or periodical signals. 

Images and most of the datasets are bonde
1
d in size and 

typically are not periodic and especially when they are 

discrete, but usually they have a positive property, that 

neighboring elements are highly correlated. They are not the 

best candidates for the previously mentioned transformations; 

discrete wavelet transformation can cope with them better. 

General wavelet transformation comprises mainly two 

steps, filtering (to compare the signal to the kernel) followed 

                                                           
Manuscript received August 31, 2014. The research of S. Piros was supported 

by the European Union and the State of Hungary, co-financed by the 

European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-
0001 'National Excellence Program'. 

Sandor J. Piros is with University of Debrecen Engineering faculty, 

Electrical Engineering and Mechatronics Department, (phone:+36-20-511-
3429, e-mail: piros@eng.unideb.hu). 

Peter Korondi is with Budapest University of Technology and Economics, 

Dept. of Mechatronics, Optics and Engineering Informatics, Budapest (email: 
korondi@mogi.bme.hu). 

by a downsampling process. In the case of second generation 

wavelet transformation there are three steps, first is splitting 

the data into two parts, for example to even and odd elements, 

predict odds using even part, thus generating the detail 

coefficients and finally update even part using detail 

coefficients [1]. Inverse transformation has similar steps in 

opposite order. 

Discrete wavelet transformation does the same (Figure 1), 

decompose the image with a high pass and a low pass filter; 

h(n) high-pass filter provides the detail coefficients, g(n) filter 

provides the approximation coefficients. After downsampling 

the image high frequency coefficients we get the first level 

coefficients and downsampling the low frequency coefficients 

we could get the further (second and so on) level coefficients 

[2]. 

II. WAVELET TRANSFORMATION 

A. Second Generation Wavelet Transformation of 1D 

(one-dimensional) Signal 

The simplest use of this wavelet transformation is for 1D 

signal. 

 

Figure 1 General DWT representation using cascading filter bank 

Decomposition into low and high frequencies by convolution, 

followed by downsampling (g(n) low pass, h(n) high pass filters). 

T 
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Restriction on h and g filters: they must complement each other 

so, that we should be able to reconstruct the original signal. 

 

Filtering: 

In a 1D system we have an input signal f, and the 

transformed signal is g, than the linear constant coefficient 

difference transformation of the signal looks like: 

  

  (1) 

The region of the filters are and , ak and bk are real 

numbers. By rearranging this difference equation we get, that 

if a0≠0 and  the transformed signal would be: 

 

(2) 

for example let the direction of recursion be from left to right.  

B. Spatial 2D (two-dimensional) System 

How to carry out wavelet transformation in higher 

dimensional systems? In a general 2D spatial system the two 

variables are m and n, the linear constant coefficient 

difference equations could be written as: 

 
  (3) 

Whereas f is the input image, g is the transformed image, 

bk,l are the feedforward coefficients, ak,l are the feedback 

coefficients [3].  The solution for y: 

 
  (4) 

 
Figure 2 Filtering progression in a 2 Dimensional system 

The progression could be e.g. horizontally left to right, 

vertically up to down by each row, Figure 2 gives an example. 

 

Figure 3 An example of a hierarchical image transformation in 2D 

system; L is low frequency component, H is the high frequency 

component of the signal 

Wavelet transformations are hierarchical transformations. 

Figure 3 example shows the transformation of a square shape 

image into fragments of similar shapes [4]. 

III. MATRIX OPERATIONS 

A. First Step of the Transformation: Downsampling 

One important step of wavelet transformation is 

downsampling. When the signal is a 1D, it is very simple to 

take every other element apart, select even and odd elements. 

What to do, how to proceed with 2D images? To answer this 

question is not so self-explanatory. For example in each cycle 

of the transformation we can transform the picture first along 

x axis, then y, x, y and so on (Figure 4).  

The most important observation is, that the shape of the 

pixels, so the shape of the transformed image becomes 

distorted after every other transformation step (H11, H21, H31 

in Figure 4). The size of the original image in this example 

was 2
n
x2

m
 pixels, so H11 should be 2

n
x2

m-1
, H12 2

n-1
x2

m-1
 

pixels size and so on. 

The purpose of the transformation is to replace dataset 

elements by the extent of deviation from their predicted 

values. We have assumed that the elements are correlated to 

each other, so the elements of the transform should be near to 

zero values. 
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Figure 4 Image transformation in 2D 

The practical implementation of discrete wavelet 

transformation was described above. The undesirable or 

objectionable feature of that method is to perform instruction 

cycles. Numerical programs like Matlab execute matrix 

operations and manipulations much faster. We can create 

transformation matrix T, which is capable to perform the 

downsampling and approximation in one run.  

    ┌                      ┐ 

    │1  0  0  0  0  …  0  0│ 

    │0  0  1  0  0  …  0  0│ 

    │⁞              …  0  0│ 

    │…  …  0  0  0  0  1  0│ 

  T=│1 -1  0  0  0  …  0  0│ 

    │0  0  1 -1  0  …  0  0│ 

    │⁞              …  0  0│ 

    │…  …  0  0  0  0  1 -1│ 

    └                      ┘ 

     (5) 

     ┌                      ┐ 

     │1  0  0  0  1  0  0  0│ 

     │0  0  0  0 -1  0  0  0│ 

     │0  1  0  0  0  1  0  0│ 

     │0  0  0  0  0 -1  0  0│ 

  TT=│0  0  1  0  0  0  1  0│ 

     │0  0  0  0  0  0 -1  0│ 

     │0  0  0  1  0  0  0  1│ 

     │0  0  0  0  0  0  0 -1│ 

     └                      ┘ 

     (6) 

P is a picture or dataset to be transformed, the resulting 

matrix consists of two submatrixes, P’ should contain the 

approximation coefficients and D submatrix for the detail 

coefficients.  

      

  (7) 

     
  (8) 

Equation (7) works in x direction and equation (8) for y 

direction. 

For example in x direction: 

┌          ┐ ┌                   ┐ 

│1  0  0  0│ │a1,1 a1,2 a1,3 a1,4│ 

│0  0  1  0│ │a2,1 a2,2 a2,3 a2,4│ 

│1 -1  0  0│•│a3,1 a3,2 a3,3 a3,4│═ 

│0  0  1 -1│ │a4,1 a4,2 a4,3 a4,4│  

└          ┘ └                   ┘  

 ┌                                       ┐ 

 │  a1,1      a1,2      a1,3      a1,4   │ 

 │  a3,1      a3,2      a3,3      a3,4   │ 

═│a1,1-a2.1 a1,2-a2.2 a1,3-a2,3 a1,4-a2,4│ 

 │a3,1-a4.1 a3,2-a4.2 a3,3-a4.3 a3,4-a4.4│ 

 └                                       ┘  

  (9) 

and in y direction: 

┌                   ┐ ┌          ┐  

│a1,1 a1,2 a1,3 a1,4│ │1  0  1  0│  

│a2,1 a2,2 a2,3 a2,4│ │0  0 -1  0│  

│a3,1 a3,2 a3,3 a3,4│•│0  1  0  1│═ 

│a4,1 a4,2 a4,3 a4,4│ │0  0  0 -1│ 

└                   ┘ └          ┘ 

 ┌                             ┐ 

 │a1,1 a1,3 a1,1-a1,2 a1,3-a1,4│ 

 │a2,1 a2,3 a2,1-a2,2 a2,3-a2,4│ 

═│a3,1 a3,3 a3,1-a3,2 a3,3-a3,4│ 

 │a4,1 a4,3 a4,1-a4.2 a4,3-a4.4│ 

 └                             ┘   

     (10) 

B. Inverse-Transformation 

The previously described transformation is completely 

lossless, but it could be modified for lossy transformation, if 

compression is more important than fidelity [5]. 

Following this process reversely we can get back the 

original information, dataset or image, which is the inverse-

transformation. 

During restoration of the original image we have to use the 

inverse of the transformation matrix, i.e.: 

      

  (11) 

     
  (12) 

Equation (11) works in x direction and equation (12) for y 

direction. 

For example in x direction: 
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┌                   ┐ ┌          ┐  

│a1,1 a1,2 a1,3 a1,4│ │1  0  0  0│  

│a2,1 a2,2 a2,3 a2,4│ │1  0 -1  0│  

│a3,1 a3,2 a3,3 a3,4│═│0  1  0  0│• 

│a4,1 a4,2 a4,3 a4,4│ │0  1  0 -1│  

└                   ┘ └          ┘  

 ┌                                       ┐ 

 │  a1,1      a1,2      a1,3      a1,4   │ 

 │  a3,1      a3,2      a3,3      a3,4   │ 

•│a1,1-a2.1 a1,2-a2.2 a1,3-a2,3 a1,4-a2,4│ 

 │a3,1-a4.1 a3,2-a4.2 a3,3-a4.3 a3,4-a4.4│ 

 └                                       ┘   

 (13) 

and in y direction: 

┌                   ┐  

│a1,1 a1,2 a1,3 a1,4│  

│a2,1 a2,2 a2,3 a2,4│  

│a3,1 a3,2 a3,3 a3,4│═ 

│a4,1 a4,2 a4,3 a4,4│  

└                   ┘  

 ┌                             ┐ ┌          ┐ 

 │a1,1 a1,3 a1,1-a1,2 a1,3-a1,4│ │1  1  0  0│ 

 │a2,1 a2,3 a2,1-a2,2 a2,3-a2,4│ │0  0  1  1│ 

═│a3,1 a3,3 a3,1-a3,2 a3,3-a3,4│•│0 -1  0  0│ 

 │a4,1 a4,3 a4,1-a4.2 a4,3-a4.4│ │0  0  0 -1│ 

 └                             ┘ └          ┘(14) 

In case we want to filter the signal, the signal filtering can 

be addressed also with matrix operations. The simplest case is, 

when a pixel value is estimated or predicted by the average of 

its two neighbors (½ 0 ½) like in paragraph A. The filtration 

is carried out by using the matrix F in x direction (equation 

(16) and its transpose in the y direction (equation (17). 

    ┌                      ┐ 

    │1  0  0  0  0  0  0  0│ 

    │½  0  ½  0  0  0  0  0│ 

    │0  0  1  0  0  0  0  0│ 

    │0  0  ½  0  ½  0  0  0│ 

  F=│0  0  0  0  1  0  0  0│ 

    │0  0  1  0  ½  0  ½  0│ 

    │0  0  0  0  0  0  1  0│ 

    │0  0  0  0  0  0  1  0│ 

    └                      ┘ 

    (15) 

      

  (16) 

      
  (17) 

where PF is the filtered image. We can notice that the pixels 

of the last row or column have neighbor only at one side 

vertically or horizontally, obviously it is not possible to figure 

out average value. 

For example in x direction: 

┌          ┐ ┌                   ┐  

│1  0  0  0│ │a1,1 a1,2 a1,3 a1,4│  

│½  0  ½  0│ │a2,1 a2,2 a2,3 a2,4│  

│0  0  1  0│•│a3,1 a3,2 a3,3 a3,4│═ 

│0  0  1  0│ │a4,1 a4,2 a4,3 a4,4│  

└          ┘ └                   ┘  

 ┌                                                ┐ 

 │   a1,1        a1,2        a1,3        a1,4     │ 

 │½(a1,1+a3.1)½(a1,2+a3.2)½(a1,3+a3,3)½(a1,4+a3,4)│ 

═│   a3,1        a3,2        a3,3        a3,4     │ 

 │   a3,1        a3,2        a3,3        a3,4     │ 

 └                                                ┘(18) 

and in y direction: 

┌                   ┐ ┌          ┐  

│a1,1 a1,2 a1,3 a1,4│ │1  ½  0  0│  

│a2,1 a2,2 a2,3 a2,4│ │0  0  0  0│  

│a3,1 a3,2 a3,3 a3,4│•│0  ½  1  1│═ 

│a4,1 a4,2 a4,3 a4,4│ │0  0  0  0│  

└                   ┘ └          ┘  

 ┌                            ┐ 

 │a1,1 ½(a1,1-a1,3) a1,3 a1,3│ 

 │a2,1 ½(a2,1-a2,3) a2,3 a2,3│ 

═│a3,1 ½(a3,1-a3,3) a3,3 a3,3│ 

 │a4,1 ½(a4,1-a4.3) a4,3 a4,3│ 

 └                            ┘   

      (19) 

Equation (20 shows an example of a higher order filter 

using quadratic spline interpolation (-
1
/16 

 
0   

9
/16 

 
0   

9
/16 

 
0  -

1
/16). 

Because the size of this example filter is small (for an image 

of 8x8 pixel size only) and the filter is distorted near the 

edges, so only the third line contains the complete kernel of 

this filter.  

    ┌      
     

     
     

     
     

     
    

┐ 

    │  1   
 0   

 0   
 0   

 0   
 0   

 0   
 

0  │ 

    │ 1/2  
 0   

9/16 
 0  -

1/16 
 0   

 0   
 

0  │ 

    │  0   
 0   

 1   
 0   

 0   
 0   

 0   
 

0  │ 

    │-1/16 
 0   

9/16 
 0   

9/16 
 0  -

1/16 
 0  │ 

  F=│  0   
 0   

 0   
 0   

 1   
 0   

 0   
 

0  │ 

    │  0   
 0  -

1/16 
 0   

9/16 
 0   

1/2  
 0  │ 

    │  0   
 0   

 0   
 0   

 0   
 0   

 1   
 

0  │ 

    │  0   
 0   

 0   
 0  -

1/8  
 0   

9/8  
 0  │ 

    └      
     

     
     

     
     

     
    

┘(20) 

To solve the problem when the filter is overlapping the edge 

of the picture, there are different methods. For example we 

can adjoin black or white pixels outside the boundary or 
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mirroring the last rows or columns like it was done above. 

C. Practical Implementation of the Transformation 

The best way to demonstrate this algorithm is through the 

example of an image transformation. Figure 5 is a 256 by 256 

pixels size 8 bit gray scale image, after transformation we can 

get the transformed image: Figure 6. For generating a 

predicted value we have used the average value of two 

neighbors of a2k: p2k=a2k-1- a2k+1. 

 

Figure 5 Example picture 256x256 pixels 

 

Figure 6 Detail coefficients of the wavelet transform of Figure 5 

image. 

By the help of the transformed image we can restore the 

original image by inverse transformation as it is shown step by 

step on Figure 7, starting from the one pixel stage unto the 

next to the last stage (from 1 
st
 to (n-1)

th
 step 256x128 pixels 

image). 
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Figure 7 Series of approximation coefficients of the wavelet 

transform 

IV. CONCLUSION 

 

This article is about an algorithm, how to transform and 

compress discrete dataset for storage and transmission 

purposes. This algorithm could provide an economical way for 

handling a correlated or highly correlated discrete or quantized 

analog signal, image or any multidimensional data set. To 

prepare a corresponding wavelet transformation method we 

used transformation matrixes. Using matrix operations instead 

of calculating in cycles can positively influence processing the 

speed of digital signal processing. 
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