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Abstract—The method called Fuzzy Rule Interpolation-based 

Q-learning (FRIQ-learning for short) uses a fuzzy rule 

interpolation method to be the reasoning engine applied within 

Q-learning. This method was introduced previously by the 

authors along with a rule-base construction extension for FRIQ-

learning, which can construct the requested FRI fuzzy model 

from scratch in a reduced size, implementing an incremental 

creation strategy. The rule-base created this way will most 

probably contain only those rules which were significant during 

the construction process, but have no important role in the final 

rule-base. Also there can be rules which became redundant (can 

be calculated by using fuzzy rule interpolation) thanks to another 

rule in the finished rule base. The goal of the paper is to 

introduce possible methods, which aim to find and remove the 

redundant and unnecessary rules from the rule-base 

automatically by using variations of newly developed 

decremental rule base reduction strategies. The paper also 

includes an application example presenting the applicability of 

the methods via a well known reinforcement learning example: 

the cart-pole simulation. 

Keywords—FRIQ-learning, reinforcement learning, rule-base 

reduction, fuzzy rule interpolation 

I.  INTRODUCTION 

Reinforcement learning [13] methods, like Q-learning [18] 
can come to an aid in various situations, where the solution for 
the problem is hidden in the feedback gathered from the 
environment. A function describing the environment gives 
rewards (positive or negative) for every action performed. 
Based on the gathered rewards from the environment through 
the reward function, reinforcement learning methods are 
approximating the goodness value of each possible action 
performed in the possible states of the state space. (The 
functions describing the rewards are designed especially for 
the current task to be solved). 

 This way reinforcement learning methods can solve 
problems where priory knowledge can be expressed in the 
form what is needed to be achieved, not in how to solve the 
problem directly. This means that the usage of a method like 
this allows solving control problems without defining an exact 
imperative method for solving the problem. 

Q-learning [18] is a reinforcement learning method, which 
can be used for constructing the state-action-value function 
(where value means the goodness of the action in the 
corresponding state). The purpose of Q-learning is finding the 
fixed-point solution Q of the Bellman Equation [3] through 
iteration. The original Q-learning method works with discrete 
state and action spaces. Introducing fuzzy reasoning to Q-
learning results in a method which is extended to continuous 
environments. This variation is called Fuzzy Q-learning (FQ-
Learning), which traditionally applies the zero-order Takagi-
Sugeno fuzzy inference (see details in [1], [4] and [5]). 

The Fuzzy Q-learning method can be further enhanced 
with a capability to use sparse fuzzy rule bases, by the means 
of Fuzzy Rule Interpolation (FRI). A method which 
incorporates the 'FIVE' Fuzzy Rule Interpolation (FIVE FRI) 
technique was introduced by the authors previously in [15]. 
This latter method, called Fuzzy Rule Interpolation-based Q-
learning (FRIQ-learning for short) uses the mentioned fuzzy 
rule interpolation method to be the reasoning engine applied 
within Q-learning. 

A rule-base construction method was also developed for 
FRIQ-learning [17], which can construct the requested FRI 
fuzzy model from scratch in a reduced size, implementing an 
incremental creation strategy of an intentionally sparse fuzzy 
rule base. Furthermore this incrementally constructed rule-
base possibly contains rules which were only significant 
during the construction process itself, but meanwhile their 
importance lowered in the final rule-base. There can be rules 
which were superseded by other much „stronger‟ or near equal 
but different rules. Also there can be rules which are 
redundant (can be calculated by using fuzzy rule interpolation) 
in the finished rule base. 

The goal of the paper is to introduce possible methods, 
which aim to find and remove the redundant and unnecessary 
„less important‟ rules from the rule-base automatically by 
using variations of newly developed decremental rule base 
reduction strategies. The paper also includes an application 
example presenting the applicability of the methods via a well 
known reinforcement learning example: the cart-pole 
(reversed pendulum) simulation. 
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II. FUZZY RULE INTERPOLATION-BASED 

Q-LEARNING 

Many Fuzzy Rule Interpolation (FRI) techniques exist 
already, see e.g. [2] for a comprehensive overview on FRI 
methods. Also a freely available toolbox implementing 
various FRI methods is presented in [6]. 

Introducing FRI in Q-learning gives the possibility of 
omitting rules (action-state values) from the fuzzy rule-base 
gaining the potentiality of applying the proposed method in 
larger state dimensions with a reduced rule-base sized action-
state space. Rule-base reduction with FRI can also be achieved 
by sparse fuzzy rule-base identification methods based on 
input-output data sets, e.g. the RuleMaker Toolbox [7] is a 
freely available sparse rule-base identification software. 

Fuzzy Rule Interpolation-based Q-learning (FRIQ-
learning) is different from these kind of identification 
methods, because it does not require input-output data sets for 
the construction of a suitable sparse fuzzy rule-base. 

This FRIQ-learning method, which was first introduced by 
the authors in [15] is the result of the substitution of the zero-
order Takagi-Sugeno fuzzy model of Fuzzy Q-learning (FQ-
learning) with the „FIVE‟ FRI model. The „FIVE‟ FRI is a fast 
and application oriented FRI method, for in depth details on the 
method see [8] [9] and [10]. 

In this model, the state-action-value function is represented 
by a fuzzy rule-base, where a fuzzy rule has the form: 

If x1 = Ak,1  And  x2 = Ak,2 And … And  xm = Ak,m                             
Then  y = ck ,  

where x is the observation, A is the fuzzy rule antecedent, y 
is the conclusion, and ck is the consequent value. 

Applying the FIVE FRI method with singleton rule 
consequents to be the model of the state-action-value function, 
we get: 
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where  as,Q
~

 is the approximated state-action-value 

function. 

The partial derivative of the model consequent  as,Q
~

 

with respect to the fuzzy rule consequents qu,i, required for the 
applied fuzzy Q-learning method in case of the FIVE FRI 
model from (1) can be expressed by the following formula 
(according to [11]): 
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where qu,i  is the constant rule consequent of the k
th

 fuzzy 

rule, ks,δ  is the scaled distance in the vague environment of 

the observation, and the k
th

 fuzzy rule antecedent, λ is a 
parameter of Shepard interpolation (in case of the stable 
multidimensional extension of the Shepard interpolation it 
equals to the number of antecedents according to [14]), x is the 
actual observation, and r means the number of the rules. 

Replacing the partial derivative of the conclusion of the 0-
order Takagi-Sugeno fuzzy inference with the partial 
derivative of the conclusion of FIVE (2) with respect to the 
fuzzy rule consequents qu,i leads to the following equation for 
the Q-Learning action-value-function iteration: 
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state Si, Sj is the new observed state, gi,u,j is the observed 

reward completing the ji SS   state-transition, γ  is the 

discount factor and  0,1k
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k
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~

 action-values can be approximated by 

equation (3), which uses the FIVE FRI model. An application 
example presenting a proof-of-concept implementation can be 
found in [15]. 

III. INCREMENTAL RULE-BASE CONSTRUCTION 

Our first approach for rule-base reduction was creating a 
rule-base incrementally constructed from scratch. This method 
(introduced in [16] and [17]) simply increases the number of 
the fuzzy rules by inserting new rules in the required positions. 
Instead of initially building up a full rule base with the 
conclusions of the rules (Q values) set to a default value, only 
a minimal sized rule base is created with 2

N+1
 fuzzy rules at 

the corners of the N+1 dimensional antecedent (state-action 
space) hypercube. In cases when the action-value function 
update is considered as high (e.g. greater than a preset limit 

Q : QQ 
~

), and even the closest existing rule to the actual 

state is farther than a preset limit  
s  , then a new rule is 

inserted to the closest possible rule position. These possible 
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used as starting point 
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Fig. 2. The final decrementally reduced rule-base 

providing the same (or approximately the same) results 

rule positions are gained by inserting a new state among the 

existing ones (
kk ss 1
, ik  , 

2

2
1





 ii

i

ss
s ). In case if the 

update value is relatively low ( QQ 
~

), or the actual state-

action point is in the vicinity of an already existing fuzzy rule, 
then the rule-base remains unchanged (only the conclusions of 
the corresponding rules will be updated). The next step is 
updating the Q value, performed regarding to the FRIQ-
Learning method according to the equation (3) as it was 
discussed earlier. 

This way the resulting action-value function will be 
modeled by a sparse rule base which contains only the fuzzy 
rules which seem to be most relevant in the model. Applying 
the FIVE FRI method, as stated earlier, allows the usage of 
sparse rule bases which could result in saving a considerable 
amount of computational resources and reduced state space. 

An application example for this method was presented in 
[17], which resulted in the reduction of the original rule-base 
with 2268 rules to a rule-base which only contains 182 rules. 
When this latter rule-base is used for solving the problem of 
application example the same results and rewards can be 
achieved. 

Further reduction of rule-bases created as introduced 
previously is presented in the following chapter. 

IV. RULE-BASE REDUCTION STRATEGIES 

As already mentioned earlier, the previously completed 
incrementally constructed rule-base possibly contains 
redundant rules. It is possible to find and remove these rules 
from the rule base automatically by using various decremental 
rule-base reduction strategies presented in the followings. 

According to the Bellman equation [3] only the highest of 

the possible Q values for the next (k+1)th iteration step is used 
in the calculation of the next (currently approximated) Q 
value: 

1

,

~
max 



k

vj
Uv

Q       (4) 

In other words this means that high Q values are possibly 
more significant than lower Q values (when following a 
greedy strategy), hence rules with higher consequent values 
possibly have greater impact on the resulting problem solution 
and on the rewards. 

This suggests a strategy to try to omit rules from the 
previously incrementally constructed rule base (e.g. see Fig. 
1.) which have low Q values as their conclusion. Following 
this strategy (Strategy I.), the selected rules based on their 
conclusion value (means the absolute Q value) are omitted one 
by one, as the whole process is evaluated over and over again. 
If the rewards given by the environment with the truncated 
rule base remain the same, or near the same (reward difference 
is within a preset interval), or maybe higher than the rule is 
considered to be redundant, therefore it will be removed from 
the rule base. In the other case when the given reward is 
considerably lower or the evaluation fails, the rule is 

considered being a cardinal rule, therefore it has to stay in the 
rule base (see Fig. 2.). 

Depending on the actual problem, difference in the 
cumulative rewards could be allowed to some degree, till the 
problem is still solved and produces the same or near the same 
rewards. Various thresholds can be used in defining „near the 
same‟ depending on the task and requirements. Close matches 
of the rewards should result in approximately the same steps 
as were the original incrementally constructed full rule base, 
when using the final reduced rule base. Accepting relatively 
greater (depending on the exact reward function), but still 
valid, differences between the rewards could result in a 
different step-by-step solution, but the overall task will still be 
solved. 

The next strategy (Strategy II.) is very similar to the 
previously presented strategy, the only difference is, that it 
first chooses the rule with the highest consequent (Q value). 
This way the probably most important rules are tested first to 
determine whether they are needed or not. 

Another developed strategy (Strategy III.) selects rule 
groups for removal, hence allowing mass removal of rules, 
which could result in faster completion of the reduction 
process. First it calculates the range of the Q values, and 
divides the rule group using the halved range value as a 
threshold. With the rule group of lower Q values removed 
temporarily, then evaluate the reduced rule-base. If the 
reduced rule-base seems to be still sufficient for solving the 
task, permanently remove the rule group. In the other case, 
when the temporarily truncated rule-base fails to sufficiently 
solve the problem the removed rule groups is restored. 
Therefore if the group of rules seems to be too large, then 
decrease the threshold limit of Q by halving again the 
previously calculated threshold value based on the range of Q 
values. This process is repeated until the group of rules can be 
removed or if the group contains only 1 rule and the problem 
still cannot be solved with the removal of this last rule, then 
mark the rule to be permanent (so this rule will not be selected 
again into a group during the reduction process), and restart 
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Fig. 3. The number of rules per episode using Strategy I. 

 

Fig. 4. The number of rules per episode using Strategy II. 

 

Fig. 5. The number of rules per episode using Strategy III. with 

exact reward matching.  

 

Fig. 6. The number of rules per episode using Strategy III. 

when differences in the rewards are allowed. 

the process with a newly calculated threshold value, now 
omitting the value of the previously marked rule. 

This process should be repeated until all the remaining 
rules for possible group forming are marked permanent 
(meaning that those have been already checked for removal). 

It is worth noting that different rule-bases can exist for 
solving the same problem with equal results and rewards. 

After the reduction process is complete, the final rule base 
will contain only the most significant rules, in other words this 
method extracts the cardinal rules which are basically 
operating the FRI-based system. 

In the followings the widely used cart-pole example, which 
was used to present previous FRIQ-learning related examples 
(in [15] and [17]), will be used to demonstrate the presented 
rule base reduction strategies to gather a still functional but 
minimal size, truncated rule base. 

A. Application example for presenting the decremental 

reduction strategies 

For the demonstration of the proposed reduction strategies 
the same cart-pole application is used as for the previous 
FRIQ-learning application examples in [15] and [17]. The 
original implementation, which works in discrete space, was 
developed by José Antonio Martin H. This implementation 
uses SARSA [12] (a Q-learning method) and is freely 
available from [19]. The example program runs through 
episodes, where an episode means a cart-pole simulation run. 
The goal of the application is to move the cart to the center 
position while balancing the pole. Maximum reward is gained 
when the pole is in vertical position and the cart is on the 
center position mark. An episode is considered to be 
successfully finished (gains positive reinforcement in total) if 
the number of iterations (steps) reaches one thousand while 
the pole stays up without the cart crashing into the walls. 
Otherwise the episode is considered to be failed (gains 
negative reinforcement in total). The fuzzy rules are defined in 
the following form: 

If s1 = A1,i and s2 = A2,i and s3 = A3,i  and s4 = A4,i  
and a = A5,i  Then q = Bi 

The rule antecedent variables are the following: s1 – shift 
of the pendulum, s2 – velocity of the pendulum, s3 – angular 
offset of the pole, s4 – angular velocity of the pole, a – 
compensation action of the cart. The linguistic terms used in 
the antecedent parts of the rules are: Negative (N), Zero (Z), 
Positive (P), the multiples of three degrees in [-12,12] degree 
interval (N12, N9, N6, N3, Z, P3, P6, P9, P12) and for the 
actions: from negative to positive in one tenth steps (AN10-
AP10, Z). 

The cart-pole demo reads the previously incrementally 
constructed rule base as a starting rule base for further 
reduction. Then the previously introduced strategies are 
applied for rule and rule group removal. With the truncated 
rule base a whole episode is evaluated. If the episode is 
considered successful with the removed rule or rule group, 
then the rule or rule group is removed permanently, otherwise 

it will be inserted back into the rule base. This is repeated until 
every rule is checked for possible removal (see Fig. 3., Fig. 4., 
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Fig. 5. and Fig. 6. – it can be easily recognized on the curve 
where the rules were not omitted). 

The starting rule base, as the result of the incremental rule 
base construction method as seen in the previous subchapter, 
consists of 182 rules. Regarding Strategy I. and Strategy II. 
this means 183 episode runs (+1 for determining the correct 
reward without removing any rules) and possibly one rule 
fewer in each and every episode run, which means that the 
computational resource needs are possibly (when a rule is 
sentenced to be removed) decreasing with every episode. 

Two different conditions were used in this example 
application for deciding whether the episode was successful or 
not. First the rewards were strictly checked to be the same as 
the previous episode, which means the rewards have to be the 
same as they were with the incrementally constructed rule 
base. Then in the second case the matching of the rewards 
were not strict, the rewards did not have to match exactly, it is 
enough for the rewards to be positive, meaning that the 
episode was successful (but the step-by-step solution can 
differ). 

In this demonstration, the previously presented three 
strategies with both conditions were evaluated. Results are 
shown in Table III. and also on Fig. 3. through Fig. 6. 

The smallest rule-base of only 6 rules was achieved by 
both Strategy I. and II., but when exact reward matching was 
not necessary, 5 rules in the final reduced rule base were 
enough to successfully achieve the required task. 

The time taken for the various strategies is also shown in 
Table III. It can be clearly seen that the group removal 
strategy is some magnitudes faster, but in spite of being fast, 
in this very example the smallest rule-base found by this 
strategy contains more rules than in Strategy I. 

 

TABLE I.  
RULES IN THE RULE-BASE AFTER PERFORMING THE DECREMENTAL REDUCTION 

WHEN AN EXACT REWARD MATCH IS MANDATORY 

R# s
1
 s

2
 s

3
 s

4
 a q 

1 P Z Z P AP10 1907.33 

2 P Z N3 N AN10 1898.73 

3 P Z Z N AN8 1904.22 

4 P Z N3 P AP8 1899.27 

5 N Z N12 N AP10 -5251.65 

6 P P Z N AN8 -3100.5 

TABLE II.  
 

RULES IN THE RULE-BASE AFTER PERFORMING THE DECREMENTAL REDUCTION 

WHEN AN EXACT REWARD MATCH IS NOT MANDATORY 

R# s
1
 s

2
 s

3
 s

4
 a q 

1 P Z Z P AP10 1907.33 

2 P Z N3 N AN10 1898.73 

3 P Z Z N AN8 1904.22 

4 P P Z N AN8 -3100.5 

5 P Z P12 P AP6 -6446.87 

TABLE III.  
 

RESULTS OF THE DIFFERENT REDUCTION STRATEGIES 

Strategy  Episodes  Rules  Time 

I. w/ 0 diff 183 6 4180 s 

I. w/ ∞ diff 183 5 4150 s 

II. w/ 0 diff 183 6 4175 s 

II. w/ ∞ diff 183 6 4210 s 

III. w/ 0 diff 81 14 310 s 

III. w/ ∞ diff 90 13 231 s 

 

V. CONCLUSIONS 

Possible decremental reduction strategies have been 
developed for the Fuzzy Rule Interpolation-based Q-learning 
method (FRIQ-learning), which can further reduce the size of 
the previously incrementally constructed fuzzy rule-bases. The 
various combinations of the reduction strategies were 
evaluated via the cart-pole application example. The 
application example clearly shows the benefit of using such a 
strategy, instead of the 2268 rules in the original FRIQ-
learning example application and the 182 rules in the 
incrementally constructed FRIQ-learning example application 
only 5 rules were enough in a certain case using the presented 
rule-base reduction methods. One of the developed strategies 
provides an usable fuzzy rule-base in much less time (nearly 
20 times faster in the cart-pole example) than the other basic 
strategies, but the size of final rule-base in this case tends to be 
somewhat, but not significantly larger (14 rules in the cart-
pole example). 

This huge drop in the number of rules is significant, which 
means that not only the amount of computational resources 
required for processing is greatly reduced, hence allowing for 
wider state-action spaces with the same computational 
resources, but the small number of rules in the final fuzzy 
rule-base could also allow the rules to be easily presented in a 
human readable form. This can be of great value in the case of 
problems where the solution of the problem is not known in a 
rule-base like form (step-by-step directions in the possible 
cases), but can be composed in a manner which is suitable for 
a reinforcement learning methods, in this case for the FRIQ-
learning (define the desired goal with positive and negative 
rewards). 
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