
Recent Innovations in Mechatronics (RIiM) Vol 8. (2021) No 1.

DOI: 10.17667/riim.2021.1/5.

Performing Canny Edge Detection Using NI

LabVIEW Software Environment

Zalan Tamas Geresi

Mechatronics Department

Faculty of Engineering,

University of Debrecen

Debrecen, Hungary
geresizalan@gmail.com

Syeda Adila Afghan

Mechatronics Department

Faculty of Engineering,

University of Debrecen

Debrecen, Hungary
adila@eng.unideb.hu

Dr. Peter Tamas Szemes

Mechatronics Department

Faculty of Engineering,

University of Debrecen

Debrecen, Hungary
szemespeter@eng.unideb.hu

Abstract — Performing image acquisition and processing

can require a high amount of computational resource. In this

article, I am discussing the application of Canny Edge Detection

algorithm to a live webcam image real-time using NI’s software

environment.

Keywords — NI, image, acquisition, processing, canny, edge,

detection, LabVIEW, webcam, software, development, myRIO,

USB, DEMO, machine, vision, module, academic

I. INTRODUCTION

As a result of the collaboration between the Mechatronics

Department, Faculty of Engineering, University of Debrecen

and NI Hungary Ltd., I was involved in a project, where a

system was developed for demonstration purposes.

I had the opportunity to guide the development stages of

the system (later referred as DEMO) from scratch, until

release. The main goal of this device is to catch the attention

of children and youth, inspire new engineering-based ideas

and thoughts in them in order to show how tempting it is to

become an engineer. The DEMO was born for events where

the company represents and advertises itself, such as job fairs

and science-based community events.

In a nutshell, when the DEMO is in operation, it creates a

live source webcam image and a live edge detected result

image on a monitor that is aimed at the crowd in order to catch

their attention. When a specific command is given by the user,

the system saves the last frame of the edge detected result

camera stream as a still image. Shortly, this picture is

converted into vector graphical objects, that are drawn to

paper using a 2D Plotter. This way, the DEMO is capable of

drawing a portrait of a visitor and this picture can be brought

home as a memory from the event.

This article focuses on the image acquisition and

processing steps that took place in the project from choosing

the suitable hardware for the purpose, to collecting the output

picture of the software.

II. EDGE DETECTION

A. Edge Detectors in General

Edge detectors play a major role in computer-based image

processing and evaluation systems, also in machine vision.

The main task is to optimize the resource, required later for

image analysis in a way that useful structural information is

kept, while the processed data is dramatically reduced. [1]

Its main advantage is the minimalization of failure rate in

image analysis. As a result, this technique is often used in

object identification and quality assurance.

B. Definition of Edges

Fig. 1. Types of local image phenomena [2]

Edges are considered to be a high intensity change,

perpendicular to the contour. These are the most used local

image phenomena in the field of image processing.

In machine vision systems, detection of edges is more

typical, since they require significantly less resource than

corners, lines or blobs. However, it is important to note that

picture edges do not always concur with physical edges. False

detected edges can be a result of shadows with intensive

contour, reflection or certain textures.

Whenever an edge detector is used, the scene and other

circumstances must be manipulated as much as possible in

order to minimize false edges (matte surfaces, homogeneous

illumination, high applied contrast values etc.).

C. Criteria of Edge Detectors

When comparing different algorithms, the following

expectations are examined [2]:

1. Where no physical edge is present, result must be

zero.

2. False positives and false negatives must be

minimized.

3. Localization must stay accurate.

4. Filter must be independent from edge direction.

5. One edge must be detected once.

D. Basic Edge Detector Filters

Each mentioned edge detector is a filter, that applies a

convolution mask. This mask is symmetric, often 3x3 size and

has an origin in its center element.

During processing, we apply the filter mask to every pixel

in the source image using translation. Since the origin of filter

is shifted to the inspected pixel and it is required to have

exactly eight neighbor pixels, we can not compute values for

those, that are located exactly in the border of the image.

Finally, the end value is calculated using the corresponding

source pixels and the convolution mask. [3]

Roberts Edge Detector

The simplest edge detector filter, where the mask matrix

size is only 2x2. Masks are:

𝑔𝑥 = (
1 0
0 −1

) 𝑎𝑛𝑑 𝑔𝑦 = (
0 1

−1 0
) (1.)

Hence the small size, it requires the least amount of

resource. Still, it is the one that is most prone to detect noises.

For every pixel, the value is calculated based on its 3 neighbor

pixels:

 𝐺𝑥 = 𝑓𝑖,𝑗 − 𝑓𝑖+1,𝑗+1 𝑎𝑛𝑑 𝐺𝑦 = 𝑓𝑖+1,𝑗 − 𝑓𝑖,𝑗+1 (2.)

The intensity for each pixel is given as the length of the G

vector:

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2

(3.)

Prewitt Edge Detector

The simplest edge detector filter, where the mask matrix

size is 3x3. Masks are:

𝑔𝑥 = (
−1 0 1
−1 0 1
−1 0 1

) 𝑎𝑛𝑑 𝑔𝑦 = (
1 1 1
0 0 0

−1 −1 −1
) (4.)

The handling of point-like noises is more efficient in this

case then at Roberts. Its drawback is the sensitivity to diagonal

edges because the distance between two linear neighbor pixels

is shorter than between two diagonally positioned ones. [4]

Sobel Edge Detector

Sobel fixes Prewitt’s issue with diagonal edges through

weighting the linear ones. Filter masks are:

𝑔𝑥 = (
−1 0 1
−2 0 2
−1 0 1

) 𝑎𝑛𝑑 𝑔𝑦 = (
1 2 1
0 0 0

−1 −2 −1
) (5.)

To demonstrate the practicality of Sobel, a sample

calculation has been created using Microsoft Excel:

Fig. 2. Sobel Edge Detector, Practical Example [5]

While processing a vertical edge with a slight amount of

noise using Sobels’ gx mask, a vertical line is created exactly

where the edge on source image is located. Note, that this

object has a width of 2 pixels, so post-processing still needs to

be done.

III. CANNY EDGE DETECTION ALGORITHM

Canny Edge Detection is most widely used, multi-step

edge detector algorithm. Its effectiveness comes from its

complexity. While performing conventional edge detection,

the additional pre- and post-processing steps are making sure

all previously discussed edge detector criteria are met.

It was originally developed by an Australian computer

scientist John F. Canny in 1986. Thus, the name originates

from him. [1]

A. Steps

Application of Gaussian Filter

The main task of the Gaussian Filter is to apply blur to the

source image. This way unwanted structural info (in most

cases noise) can be eliminated. The convolution mask of the

Gaussian filter must have a dimension of (2p+1) * (2p+1)

where p is a positive integer. Based on the use case, the size

of mask can be 5x5 or 9x9 in most examples.

The amount of intensity reduction between neighbor

pixels is directly proportional to their distance. Often a

constant is introduced to the formula which is the reciprocal

of the sum of the mask elements, to prevent unwanted high

values.

Fig. 3. Gaussian Filter, Sample Formula [3]

Conventional Edge Detection

Each previously specified basic edge detector filter can be

utilized in this step. In general, this filter has a size of 3x3.

This can be Prewitt, but Sobel is the most widely used

alternative.

Edge Thinning

As seen in Figure 2., the result right after the edge

detection contains a two-pixel-wide edge. According to

criterium No.3 and No.5 this needs to be corrected. From two

edge pixels, the one is kept that has the higher intensity value.

Double Thresholding

After getting the gradient values, we compare them to two

pre-defined threshold values called A (low) and B (high)

thresholds. This way, pixels are divided into three different

sections:

Gi,j ≤ A Not an edge

A ≤ Gi,j ≤ B Weak edge

B ≤ Gi,j Strong edge

Table 1. Double Thresholding

Edge Tracking by Hysteresis

Here, weak edges are further inspected. If the weak edge

has a strong one as a direct neighbor, it is saved as a real edge,

if not, it is aborted. This step is handy, to get rid of false

detections based on the locations of edge objects.

B. LabVIEW Implementation

As a part of LabVIEW’s add-on, called Vision

Development Module, NI offers a near off-the-shelf solution

for performing edge detection tasks, using Canny algorithm.

Fig. 4. IMAQ CannyEdgeDetection subVI

Fig. 5. Filter Parameters Cluster Palette

By giving a source and a destination IMAQ reference

session to the subVI, it produces the desired data stream. Filter

parameters are shown in Figure 5. in detail.

The Gaussian smoothing filter can be set by two values,

Sigma and WindowSize (filter size). High and Low

Thresholds work exactly the same as discussed above.

IV. HARDWARE SELECTION

A. Processing Unit

When choosing the suitable device, which handled the

image acquisition & processing, the main requirements were

to have the appropriate I/O for connecting a digital camera and

the adequate computational resource to perform proper

processing. I have compared the devices from NI’s academic

product palette, since showcasing a DEMO with academic

hardware was also a preliminary requirement by the company.

Fig. 6. Functionality Comparison of NI’s Academic Hardware [6]

The NI myRIO was originally designed for educational
purposes on the field of measurement and control, also for
basic robot programming. The included FPGA (Field-
Programmable Gate Array) and CPU (Central Processing
Unit) work together, enabling the device to run image edge
detection tasks at a limited frame rate and resolution. The
myRIO has a dedicated USB device port to connect additional
peripherals.

Because the NI myDAQ was not able to work as a standalone
computing device and the complex modularity of NI
CompactRIO was not needed in this task, NI myRIO remained
as the best option with its packaged design.

NI myRIO-1900

Fig. 7. NI myRIO-1900 [7]

This NI product is a highly configurable, portable computer
with low power consumption. The I/O capabilities include not
only dedicated AI, AO, DIO ports, but a 3.5 mm Audio Jack
and a USB 2.0 host port. Additionally, its built-in Wi-Fi
module supports 802.11 b/g/n standards as well.

Fig. 8. Structural Diagram of NI myRIO-1900 [8]

The Xilinx Zynq-7010 is technically a hybrid chipset. Its

serial processor runs LabVIEW RT, and the included FPGA

module runs LabVIEW FPGA. The peripherals are shared

according to Figure 8.

The myRIO’s included USB Host Port supports three

different categories of cameras:

Type Description

Commercially Sold
Webcams

All webcams that
support UVC (USB
Video Device Class)
protocol.

Machine Vision Industrial
Cameras

Support of USB3 Vision
standard and backward
compatibility to USB
2.0 is required.

Basler Ace Industrial
Cameras

Must support USB3

Table 2. Camera Types supported by NI myRIO [8]

B. Camera Unit

In the current application, with no need for high-end

industrial imaging, a UVC supported device was chosen.

While keeping costs down, occasional replacement or further

replication remains an easier task as well.

Logitech C920

Fig. 9. Logitech C920 mounted, in operation [5]

Since high resolution recording was not taken into

consideration, apart from the UVC standard there were no

major additional requirements. The mounting option on the

bottom and the webcam’s high availability in the commercial

market were the two advantages why this model was selected.

V. CODE DEVELOPMENT

Each required functionality, which is in connection with

the image processing system was developed in NI’s LabVIEW

software environment. This way, the code can run both on PC

and on myRIO hardware.

A. Initialization

Fig. 10. Initialization Step, Block Diagram

In the first step, communication with webcam is obtained

using IMAQdx Open Camera.vi, Video Mode is set using a

Property Node and webcam stream is initialized. Three

different image type variables are defined (im0, im1, im2).

Then, the current value of an external file, called Counter.txt

is read and stored in the shift register of the main while loop.

B. Image Processing

Fig. 11. Image Processing Step, Block Diagram

Inside the main while loop, the webcam source image is

stored as im0 using IMAQdx Grab.vi and written out to the

Front Panel.

Im1 is a grayscale variant of the original stream, processed

by IMAQ ExtractColorPlanes.vi. Im2 gives the final

processed stream after IMAQ CannyEdgeDetection.vi is

applied.

In the meantime, current picture number (Picture#) is also

indicated on the front panel and stored as a local variable in

the code.

C. Capture

Fig. 12. Capture Step, True Case, Block Diagram

If the Capture button is pressed, it activates a Case where

the local counter is increased by one, the current frame is

saved to an external PNG file with the current counter state as

its name and the external Counter.txt file’s value is also

updated.

If no capture action is detected, processed frame is being

written out in every iteration.

D. Delete ALL Function

Fig. 13. Delete ALL Function, Block Diagram

The user can reset the program to its default state using the

Delete ALL function. If operated; the values of the local and

external counters are both set to 0. Furthermore, a for cycle

runs through, that ensures every previously captured picture is

removed from the file location.

E. Current Framerate Measurement

Fig. 14. Current Framerate Measurement, Block Diagram

This minor tool was developed to monitor effectiveness

and resource demand. It measures the required time for one

iteration, then calculates how many iterations were

successfully completed in the last second according to that.

This information is especially useful when choosing the

most suitable video mode at the initialization step.

F. Shut Down VI

Fig. 15. Shut Down VI, Block Diagram

Finally, IMAQdx Close Camera.vi finishes

communication with webcam, IMAQ Dispose.vi frees up

memory by disposing all unused image type variables and

Simple Error Handler.vi closes the error wire to make

debugging easier, if needed.

Fig. 16. Front Panel, User Interface of VI

VI. VALIDATION & RESULTS

The maximum resolution with which the myRIO’s

hardware could keep the framerate above 12 [fps] was

320x240 pixels. However current framerate is strongly

dependent on filter parameters and level of detail in the source

picture, this chosen video mode could fully satisfy the needs

that were required by this subtask during the DEMO project.

Apparently, personal computers with higher graphical

resources could manage to maintain much higher framerates

with larger resolutions. While it means an opportunity to

further develop the result’s quality and stability, it was out of

scope for this project due to hardware limitations and already

satisfactory results.

VII. BIBLIOGRAPHY

[1] J. Canny, "A Computational Approach to Edge Detection," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol.

VIII., no. 6., pp. 679-698, 1986.

[2] D. Csetverikov, Digitális képelemzés alapvető algoritmusai, 2015.

[3] C. K. Somogyi, Féligárnyékos karakterek megtalálása, Budapest:
Eötvös Lóránd Tudományegyetem, 2019.

[4] P. S. V., "Continuous Image Acquisition and Edge Detection Using
Morphological Filters and Classical Edge Detection Algorithms in

Labview," International Journal of Engineering Research &

Technology (IJERT), vol. VI., no. 2278-0181, pp. 242-245, 2017.

[5] Z. T. Geresi, DrawBOT Demo fejlesztése NI myRIO rendszerrel,

Debrecen: Debreceni Egyetem, Műszaki Kar, 2019.

[6] J.-L. Aufranc, "NI myRIO is an Education Platform Powered by
Xilinx Zynq-Z7010," CNX Sofware, 6 August 2013. [Online].

Available: https://www.cnx-software.com/2013/08/06/ni-myrio-is-an-

education-platform-powered-by-xilinx-zynq-z7010/. [Accessed 19
August 2021].

[7] NI.com, Artist, myRIO Student Embedded Device. [Art]. National

Instruments, 2016.

[8] I. National, User Guide and Specifications NI myRIO-1900, 2016.

