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Abstract
Adaptation to climate change demands the optimal and sustainable water management in agriculture, 
with an inevitable focus on soil moisture conditions. In the current study we developed an ArcGIS 10.4. 
platform-based application (software) to model spatial and temporal changes in soil moisture in a soy 
field. Six SENTEK Drill & Drop soil moisture sensors were deployed in an experimental field of 4.3 hect-
ares by the contribution of Elcom Ltd. Soil moisture measurement at each location were taken at six 
depths (5, 15, 25, 35, 45 and 55 cm) in 60-minute intervals. 
The model is capable to spatially interpolate monitored soil moisture using the technique. The time se-
quence change of soil moistures can be tracked by a Time Slider for both the 2D and 3D visualization. Soil 
moisture temporal changes can be visualized in either daily or hourly time intervals, and can be shown 
as a motion figure.
Horizon average, maximum and minimum values of soil moisture data can be identified with the built-
in tool of ArcGIS. Soil moisture spatial distribution can be obtained and plotted at any cross sections, 
whereas an alarm function has also been developed for tension values of 250, 1,000 and 1,500 kPa.  

Keywords: 3D numeric modelling, soil moisture, water management, liquid limit according 
to Arany

1. Introduction

Preparation for climate change demands 
optimal and sustainable water supplies for 
cost-efficient and sustainable agricultural 
productivity (Makó et al. 2010), which 
requires the thorough understanding and 
sound knowledge on vadose zone soil 
moisture conditions. Soil moisture is a 
highly variable environmental parameter, 
both spatially and temporally (Loew – 
Schlenz 2011), and knowledge on its 
spatial heterogeneity may provide useful 

information for precision farming and cost-
efficient crop production (Paul – Speckmann 
2004).

Soil moisture spatial distribution varies 
both vertically and horizontally in a small 
scale largely due to topography (Anderson 
– Kneale 1980; Zhu – Lin 2011), soil texture, 
soil organic matter content and vegetation 
(Novák 2005; Novák et al. 2013). Principal 
options to obtain sufficient knowledge on 
spatial distribution of soil moisture include 
high resolution ground monitoring (Zhu – Lin 
2011; Bárdossy – Lehmann 1998) or satellite 
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remote sensing applications (Jia et al. 2013; 
Penna et al. 2009; Mohanty – Skaggs 2001). A 
relatively few papers are available on in situ 
measurement with sensors, whereas a large 
number of studies tested remote sensing 
data on large-scale soil moisture products. 
One drawback of the remote technique 
is that it only obtains data from the very 
shallow subsurface in limited depth (max.: 
15-20 cm) (Brocca et al. 2009; Heathman et 
al. 2012) and is more applicable for larger 
area then on plot-scale or small watersheds 
(Hegedüs et al. 2015). Other factors that limit 
radar technology measurement comprise 
bulk density, surface roughness and high 
vegetation density. Radar soil moisture 
measurements may also be biased due to 
frequency shifts and loss in power of a radar 
signal (Paul – Speckmann 2004). Precision 
can be further reduced by background 
signal disturbances (spreading, attenuation, 
reflection and scattering) and flight density 
(Zhou et al. 2016).

Nevertheless, the use of ground soil 
moisture measurements, at least in high 
spatial density, is costly and labor-intensive. 
If the correlation is sufficiently robust, a 
single soil moisture sensor could provide 
the necessary input to predict soil moisture 
across the watershed (Wang – Qu 2009; 
Venkatesh et al. 2011; Cosh et al. 2004), 
assuming that the environmental variables 
(i.e. land use and soil characteristics) 
remain unchanged (Lacava et al. 2010). Such 
predicted datasets within the watershed may 
provide sufficiently accurate soil moisture 
(Fu et al. 2003; Loew – Schlenz 2011; 
Bárdossy – Lehmann 1998). When multiple 
sensors are needed for the studied area, to 
overcome the challenge of cost-efficiency, 
measured data should be interpolated among 
the measurement points through correlation 
functions with various GIS applications 
(Gravalos et al. 2013). A large number of 
interpolations techniques, methods and 
functions have been used to estimate soil 
moisture among the measurement points 
(e.g.: Yao et al. 2013). Yao et al. (2013) 
tested four different interpolation methods, 

namely the ordinary kriging, inverse 
distance weighting, linear regression and 
regression kriging. According to their results 
the latter performed the best. Perry and 
Niemann (2008) used empirical orthogonal 
functions to estimate soil moisture among 
measurement points.

Nonetheless, most interpolation models 
focused on 2-dimensional distribution of 
soil moisture, and only a limited number of 
publications are available on 3D-modelling, 
most commonly using Hydrus-3D, which, 
in most cases performed well (Honar et al. 
2011). Gravalos et al. (2013) developed a 
soil moisture interpolation model under 
laboratory circumstances. In their soil tank 
they measured soil moisture in a depth of 15 
cm. Although their model performed well at 
laboratory-scale, data interpretation at field 
scale is challenging. 

Our objective was to develop a relatively 
simple and cost-efficient 3-dimensional soil 
moisture visualization software which is 
suitable to present the moisture dynamics of 
multiple soil layers and horizons in real time. 
We aimed to indicate the temporal changes 
of soil moisture in each soil master horizons 
and project and interpolate data at plot scale 
(few hectares). We also planned to create a 
plotting function that is capable to show and 
visualize temporal changes of soil moisture 
in any arbitrarily selected point is space 
(including interpolated points). The result of 
the research is the property of Elcom Ltd.

2. Materials and methods

Site description

The study area (Koplaló Plot) is located on 
the southern foothills of the SW part of the 
Mecsek Hills (Jakab-hegy) in SW Hungary 
(Fig. 1.). The plot is owned by B-Aranykorona 
Ltd., and was fallowed from mid-July to mid-
September, when rape was planted in the 
plot. The study site covers a land area of 4.3 
hectares and is characterized by Ramann-type 
brown forest soils (WRB: Stagnic Cambisol). 
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The elevation ranges between 171.85 and 
182.76 meters a.s.l. with a maximum slope of 
5.41% on the southern, south-western steep, 
a former foothill colluvial deposits (Fig. 2.). 
The long-term (1971–2000) average annual 

precipitation total is 700 mm with most 
rainfall measured between May to mid-July 
(295 mm), when the precipitation regime is 
characterized by high-intensity convective 
rainfall events.

Fig. 1. Location of the study site

Fig. 2. (a) Slope and (b) aspect map of the study 
area (Koplaló Plot)

Fig. 3. Location of the soil moisture sensors  
(SENTEK and DECAGON) and the borehole  

sampling sites
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Based on our field measurements, using 
a TOPCON HiPer Pro (Topcon Positioning 
Systems, Inc., Tokyo, Japan) RTK GPS device, 
a digital elevation model (DEM) of a meter 
horizontal resolution was developed in 
ArcGIS 10.4. software environment.

Soil moisture monitoring and soil sam-
pling

In July, 2016 a soil profile of 150 cm depth 
was excavated to identify master horizons 
and for soil sampling purposes about 30 
meters north of the northern borderline of 
the studied plot. Soil samples were taken in 
three repetitions form each master horizon 
(Ap, A, B, BC and C) with Veér-type brass rings 
with a volume of 100 cm3 and a diameter of 
48 mm at depths of 15, 25, 50 and 115 cm 
to determine bulk densities and soil moisture 
with the gravimetric method according to 
Flint – Flint (2002). Four Decagon 10HS 
sensors (Decagon Devices Inc., Pullman, WA, 
United States) and four MPS-2 in one profile 
at the norther edge of the experimental plot 
(Fig. 3.) were inserted into depths of 15, 25, 
50 and 115 cm. Sensors were deployed on 
July 18, 2017 and data have been collected 
since then continuously in 30-minute 
intervals with a Decagon EM50 datalogger 
to obtain the water retention curves for the 
aforementioned soil depths

Soils of the studied plot were sampled with 
an AMS hand sampling tool at 35 locations 
to a depth of maximum 290 cm and at one 
point, at the northern border of the plot a 
soil profile was excavated to a depth of 120 
cm to identify the major soil horizon and to 
insert the Decagon 5TM and MPS-2 sensors. 
The soil sampling size were first positioned 
according to a standardized grid method with 
equal distances (2×8 drilling holes in North-
South direction), second, at the margins (2×4 
holes) in order to get an interpolation surface 
and then 11 randomly located intermediate 
points were sampled. The depth and 
thickness of each master soil horizons 
(Ap, A, B, BC and C) were determined at all 
sampling sites. Soil samples were taken at 
each sampling site from all master horizons, 

therefore altogether 175 soil samples were 
collected.

Six SENTEK Drill & Drop (Campbell 
scientific, Edmonton, Alberta, Canada) 
soil moisture sensors were deployed in 
an experimental field of 4.3 hectares. Soil 
moisture measurement at each location were 
taken at six depths (5, 15, 25, 35, 45 and 55 
cm) in 60-minute intervals. 

A seventh SENTEK sensor was deployed for 
data validation purposes on March 18, 2017, 
positioned at E571509.615 m, N81110.308 
m (Unified National Projection System, EPSG: 
23700).

Laboratory analyses

To determine soil textural classes, 
the liquid limit according to Arany were 
determined according to Buzás (1993). Soil 
texture was also determined with a dynamic 
light scattering method using a Malvern 
MasterSizer 3000 (Malvern Inc. Malvern, 
England, UK) particle size analyzer. Samples 
were pretreated with 10% HCl for CaCO3 and 
with 10% H2O2 for organic matter removal. 

Walkley-Black titration for organic carbon 
with 0.1n K2Cr2O7 as an oxidizing agent was 
used, while 96% H2SO4 was used to extract 
organic matter (quantification). Color 
intensity was determined with a Biochrom 
Libra Spectophotometer (Biochrom Ltd. 
Cambridge, England) at the wavelength of 
585 nm.

Development of the DEM for each master 
horizon 

After generating the surface DEM, we 
delineated the surfaces of each soil horizons 
(Ap, A, B, BC, C).  Master horizon depths 
were imported line-by-line into an ArcGIS 
geodatabase table. Then string-like stitches 
were strung on soil drilling point feature 
classes (by the Make Route Event Layer 
geoprocess function) from the different 
depth data of the table. From the Z values 
of the points, raster surfaces were made 
with the Spline geoprocess function. Since 
the raster surfaces cannot be extruded into 
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three-dimensional layers (multipatch), TIN 
surfaces were generated with the Raster To 
Tin geoprocess function from the raster maps 
generated by Spline.

Between the adjacent TIN layers, each 
soil horizons were generated with the 
ArcGIS Extrude Between geoprocess 
function. The extruded three-dimensional 
layers (multipatch) from the TIN generated 
irregularities (iridescence) at their edge. 
This phenomenon occurs when the edges 
of the soil layers are not perfectly smooth. 
To resolve this error, we used the Buffer 
geoprocess function to make the TIN layers 
5 percent wider. Using the functionality of 
Extrude Between geoprocess function, we 
gave the original basemap (Area of Interest 
– AOI) as boundary. Thus, each soil layer 
extent from top view deepens according to 
the base map beneath the different surfaces 
(Fig. 7.). For the three-dimensional display, 
however, we had to vertically exaggerate each 
layer downward to make the layers visually 
interpretable. 

Interpolation of soil moisture values

Based on its suitability on soil moisture 
interpolation the ordinary kriging technique 

for interpolation was used. As long as 
deterministic functions interpolate with 
one exact value of the measured point, 
the geostatistical functions utilize the 
statistical properties of the measured point. 
Deterministic interpolation techniques 
create surface from the measured points, 
based on either the extent of the similarity 
(inverse distance weighted) or the degree of 
the smoothing (spline). 

As a first step soil moisture can be 
interpolated with IDW technology at each 
time step (hour and day) in each depth (5, 
15, 25, 35, 45, 55 cm) based on soil moisture 
values measured by six SENTEK Drill&Drop 
sensors (Fig. 4.).

The result raster map has a quite bad 
resolution. However, we know the liquid 
limit value according to Arany of the given 
6 different depths of the 6 sensor (Fig. 5.). 
From these values a raster map can also be 
created still with IDW type interpolation.

Soil samples were taken at 35 locations in 
the field and the liquid limit value according 
to Arany at each genetic soil horizon of the 
35 points were determined under laboratory 
conditions (Fig. 6.). Samples were collected 
at the measurement depths of the SENTEK 

Fig. 4. Soil moisture interpolation process
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sensors (5, 15, 25, 35, 45, 55 cm). We also 
read the liquid limit IDW raster value at each 
soil drilling point and added it to their feature 
class as an attribute.

Soil moisture data were collected with 
a manual soil moisture meter (Spectrum 
TDR-300) in the sample plot from the soil 
horizons with different liquid limit values 
seven times between the summers of 2016 
and 2017. The data were inserted into a table 
(Fig. 4.). In each depth of soil drillings, the 
soil moisture IDW interpolated values were 
also saved. Based on our table we changed 
the soil moisture values.

For the development of the interpolated 
raster, as an example, if the IDW calculated 
liquid limit value of the H3 borehole at 
a depth of 5 cm (Fig. 6.) was 46 and the 
moisture value was 21.4% then we looked 
at the percentage of moisture at liquid limit 
value 43 in our table based on the predefined 
functions. This new moisture value (23.9%) 
was also saved as an attribute for each depth 
of the given drilling. We measured moisture 
values for 41 points (at six different depths). 
These 41 points were interpolated again by 
ordinary kriging technique, which requires 
a minimum number of 30 data points (Or–
Wraith 2000). 

An alarm function has also been developed 
for the model, with four categories, with 
threshold values at tension values of 1,500 

(permanent wilting point), 1,000 and 
250 kPa. The moisture content – water 
potential relations were generated with 
water retention curves based on measured 
data and fitted with RETC 6.02 using the 
van Genuchten-Mualem relationship (van 
Genuchten 1980; Maulem 1976). 

Transformation of raster maps into vec-
tor maps

Raster maps are easily used for 
visualization, whereas date attribute cannot 
be as easily assigned as to vector files. Since 
we aimed to visualize temporal changes of 
soil moisture, small vector files were needed 
(80-90 kB). Firstly, we created the contour 
lines of the time interval raster maps with 
the help of Contour geoprocess function 
then we bounded around polygons from 
contour lines with the Feature To Polygon 
geoprocess function. We projected the center 
of polygons onto the original raster and read 
out the corresponding soil moisture value. In 
other words, we generalized soil moisture 
spatial data by converting raster-based maps 
to vector maps that are 20 times smaller in 
size than the corresponding raster files. The 
completed polygon map allows the real-
time motion of time sequence of long-term 
soil moisture. The soil moisture polygons 
of different depth were then merged for the 
entire measurement period to obtain real-

Fig. 5. Volumetric Water Content IDW  
interpolation in 5 cm depth based on value  

measured by SENTEK sondes 

Fig. 6. Volumetric Water Content Kriging  
interpolation in 5 cm depth based on value 

measured by SENTEK sondes and calculated for 
soildrill points
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time vector files that are movable both in 
time and space.

2D view of soil moisture values in ArcMap

We also created the top view time sequence 
for any single master horizons in ArcMap in 
order to be able to follow each point of each 
depth of soil moisture values. Soil moisture 
vector maps calculated for different depths 
were placed spatially shifted by 300 meters 
in to the east (EOV Easting 300) while 600 
and 1200 meters to the south (EOV Northing 
-600, -1200). This way moisture pattern of 
each master horizons was visualized at the 
same time, however only the map in the 
upper left corner kept its actual position (Fig. 
10.). 

3. Results

Soil data

According to our field soil survey and 
the subsequent laboratory analyses silt 

fraction dominated the soils of the studied 
plot. Genetic soil type was classified as 
Ramann-type brown forest soils (WRB: 
Stagnic Cambisol), with clay illuviation in 
the B-horizon and with occasional stagnic 
properties. Ap horizon typically ranged 
between 7 to 12 cm indicating only shallow 
tillage operations. Depth of the parent 
material (Pleistocene loess) from the ground 
surface varied between 50 and 290 cm, 
depending on hill position, identified as 
Colluvic Regosol (Table 1). The measured 
Arany values well correspond with the 
former measurements (KA = 34–47) carried 
out by the MINERAG Ltd. and prepared for 
landowner B-Aranykorona Ltd. For the 35 
soil samples taken with borehole drillings, 
the liquid limits according to Arany ranged 
between 37.65 and 50.9, with a mean value of 
43.8, indicating loamy and clay loam texture 
for most of the soil samples.

This west margin of the pediment is clearly 
an accumulation ground where soil sediment 
is continuously deposited from the uphill part 

Table 1. Characteristics of soil layers

 Horizon 
name

Average extent 
(cm) Characteristics

Ap 0-10 Deep plow is not typical
A 10-35 More clay content than Ap layer, contains a lot of humus
B 35-60 Clay accumulation based on observed field surveys

BC 60-100 Gradually passes through the top and bottom levels
C 100-200 Soil-forming rock is pale yellow loess

Table 2. Mean, maximum and minimum soil mois-
ture values (%) measured over the monitored 

period

Depth 
(cm)

Min Max Avg Std

5 6.07 29.90 16.05 5.53

15 19.03 37.94 29.22 4.97

25 26.95 41.527 36.38 4.13

35 33.35 43.72 40.21 2.50

45 35.64 42.10 39.35 1.50

55 36.58 41.49 39.21 1.16

Table 3. Threshold volumetric water contents for 
the alarm function at 250, 1,000 and 1,500 kPa 

tension values

Horizon 
name

Threshold volumetric water  
contents for alarm (m3 m-3)

250 kPa 1,000 kPa 1,500 kPa

Ap 0.176 0.152 0.146

A 0.174 0.150 0.123

B 0.174 0.151 0.146

BC 0.138 0.124 0.121
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of the plot, which is typically characterized by 
shallow topsoils with a depth less than 60 cm 
to the top of the C-horizon.  Intense rainfall 
events, due to gully erosional processes, has 
carved 50-100 cm deep erosion gully into the 
valley-bottom. Variations in topsoil depths 
were identified by drilling data. Horizon 
depth are shown and visualized in the 
interpolated 3D model (Fig. 4.).

Soil moisture values over the monitoring 
period ranged between 6.07 and 43.72%  
whereas water potential reached its lowest 
value (-2163 kPa) on October, 3, 2016. The 
field and laboratory measured soil physical 
properties formed an integral part of the 

soil moisture interpolation model, and all 
measured data have been inserted and 
employed in the model.

Main characteristics of the obtained 
software

The current version of the software has 
a 2D and 3D visualization module, that can 
be viewed in ArcGIS ArcMap (v. 10.4) and 
ArcScene (v. 10.4), respectively. Mandatory 
input data include name and depths of 
master soil horizons, number, location (in 
X, Y Hungarian Unified National Projection 
System) and depth of soil moisture sensors, 
liquid limits according to Arany, water 

Fig. 7. Depth of the master horizons (50× vertical 
exaggeration) and the location of the soil  

sampling boreholes

Fig. 8. The interpolated soil moisture layers with 
the Time Slider application in ArcGIS  

ArcScene (50×vertical distortion)

Fig. 9. Spatial distribution of soil moisture at the six measurement depths (shifted horizontally for com-
plete and simultaneous display). Soil moisture values (θv) are indicated in % (=m3 m-3 · 100)
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retention curves and organic matter content 
for each master horizon (%). Data can be 
either typed or imported from Excel. Entered 
topography and soil horizon elevation and 
depth data can then be directly visualized in 
the program (Fig. 7.).

In the current version only ordinary kriging 
is available as interpolation technique. Soil 
moisture can be shown for any master 
horizon of the given soil. The time sequence 
change of soil moistures can be tracked and 
visualized by a Time Slider for both the 2D 
and 3D visualization (Fig. 8. and 9.). Soil 
moisture temporal changes can be visualized 
in either daily or hourly time intervals for 

any selected point in space within the area 
of interest, and can be shown as a motion 
figure. With the ArcScene on-the-fly function, 
soil moisture pattern in soils of complex 
structure and layering can be analyzed and 
explored.  Horizon average, maximum and 
minimum values of soil moisture data can 
be identified with the built-in tool of ArcGIS. 
Cross-sectional data in any directions can 
obtained and plotted on a graph (Fig. 10.). 

The alarm function has four categories in 
the model denoted with red, yellow, orange 
and green colors. Threshold volumetric 
water contents are shown in Table 3. 

Fig. 10. A cross-sectional view of soil moisture at a selected time
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4. Discussion

In the current study we have developed 
a measurement-based simple numeric 
soil moisture calculation and 2D and 3D 
visualization model. The model is applicable 
for many nature conservation and crop yield 
optimization projects, without complex 
calculations (e.g.: Richards equation). The 
software interpolates soil moisture data 
based on clay content of the soils and is 
capable to visualize data in two- and three-
dimensional GIS software environment. We 
are awere that applicability of described 
method is limited as it requires spatially 
detailed measurement of soil texture and 
soil type. Soil moisture interpolation models 
may also serve as a substitute for spaceborne 
radar analyses or rather as a verification tool 
to validate remotely sensed data. Although a 
large number of uncertainties are related to 
soil moisture spatial interpolation, this field 
of environmental research has significantly 
matured over the past decades. Despite these 
considerable developments, point ground 
soil moisture measurements only provide 
very limited information both on small- (a 
few m2) and large-scale (hectares or square 
kms) soil moisture conditions, especially on 
terrain of high relief, or uneven vegetation 
cover.  

Besides developing adaptation techniques 
to global climate changes and altered 
ecosystem services (Palomo et al. 2017) 
point measurements and interpolated soil 
moisture data can be used for many practical 
applications (Bojovic et al. 2017). Among 
various uses, some of the most important 
include (a) agricultural water and irrigation 
management (b) weather forecasting (Klug – 
Oana 2015) (c) prediction on fog formation 
by integrating regional-scale soil moisture 
into numerical weather models, (d) water 
balance calculations and estimation of water 
and solute fluxes and storage in the vadose 
and root zones, (e) drought forecasting, (f) 
runoff estimation for flood forecasting, (g) 
rehabilitation and afforestation projects.

Although remotely sensed data offer 
unparalleled advantages compared to point 
ground measurement, it may pose scientific 
challenges in terms of coarse space and time 
resolution and shallow penetration depth. 
Similarly, remotely sensed and ground-
measured soil moisture data should be used 
in a combined manner in order to minimize 
ambiguity and improve accuracy related to 
soil moisture measurements.

The findings of our research can be utilized 
at plot, and small watershed and floodplain 
scale, in water balance studies. However, 
since the model presented is still in its initial 
state and has been developed on soils of 
silty and clayey-loam texture, calibration 
and validation runs are needed to test model 
applicability for other soil physical soil types. 

Soil moisture interpolation accuracy 
depends on site properties and is also 
influenced by topography, soil and vegetation 
type as well as the selected interpolation 
method. Here, in the current study, we 
selected the ordinary kriging function for 
interpolation, whereas in the future we plan 
to test the model with other interpolation 
methods suggested in multiple former 
studies (e.g. Zhang et al. 2016) and the 
one that proves to be the best fit for our 
validation data. Our results may be inspiring 
in terms of understanding water dynamics 
of soils with complex structure. Also, many 
soil parameters need to be considered in 
the model, therefore future development 
is indispensable. Such parameter addition 
should include organic matter content, and 
applicability for sandy soils should also be 
considered in the future. In the current paper, 
we described homogeneous flow; whereas, 
in field cases preferential flow may also 
contribute to subsurface moisture conditions 
and solute pulses during individual 
rainstorms as indicated by former studies 
(e.g. Hendrickx – Flury 2001; Mullane et al. 
2015).
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