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Abstract 

The Croatian-Hungarian border section of the Dráva River has been undisturbed for almost a century, 

and it is characterised by unique fluvial morphology (braided pattern and islands) supporting rich 

habitats and wildlife. However, during the last decades human impact became more and more 

intensive. Between 1975 and 1989 three water reservoirs were built on the Croatian section of the 

river, just 16 km from the beginning of the border-section, altering the hydrology and the sediment 

characteristics of the river. On a local scale cut-offs, revetments and groynes were built. The aim of 

the study was to evaluate the effect of these human interventions. As the result of the alteration of the 

hydrology the channel pattern of the Dráva has been changing from braided to meandering, though on 

the upstream meandering part the territory and number of islands increased due to the drop of water 

stages. A cut-off and a groyne influenced only the morphology of a short section. As the result of   the 

cut-off braided pattern became more pronounced, and the groyne caused intensive channel 

aggradation and gave way to lateral island development. 
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1. Introduction 

 

The effects of different river engineering works on channels and floodplains are 

rarely investigated, though on some rivers there are evidences on rapid changes 

(Liébault and Piégay, 2001; Brooks, 2003; Pinter and Heine, 2005; Kiss and Sipos, 

2007; Mecser et al. 2009). The regulation works, especially flood control structures 

alter not only the fluvial system (Kiss and Sándor, 2009), but also the soils 

(Arnaud-Fassetta, 2003, Szabó et al. 2008), the riparian vegetation (Tóth et al. 

2009) and the micro-climate of the floodplains (Antal 2000). The in-channel 

constructions (dams, grade-control structures, groynes, revetments etc.) mostly 

alter the channel (Laczay, 1977; Surian, 1999; Surian and Rinaldi, 2003), however 

they also have an affect on floodplains. 

 

In Hungary, river regulations started in the 18
th
 century, though the lowland rivers 

were regulated following uniform plans in the 19-20
th

 centuries (Ihrig, 1973). The 

greatest number of cut-offs were made on the Tisza River and its tributaries. Here 

the first cross-sections were surveyed in 1842 to monitor the channel changes after 

the river regulation works. The same cross-sections were repeatedly surveyed 
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enabling the engineers and researchers to evaluate the channel development 

(Fekete, 1911; Félegyházi, 1929; Károlyi, 1960; Kiss et al. 2008). These studies 

recorded intensive incision and widening soon after the creation of cut-offs, thus 

the area of cross-sections increased. However, local revetment and groyne 

constructions reversed this tendency, and the channel of the Tisza started to 

became narrower, thus the flood hazard has increased (Nagy et al. 2001; Kiss et al. 

2008). 

 

The regulation works were so drastic in case of some rivers, that river 

metamorphosis occurred. For example the original anastomosing/meandering 

pattern of the Maros River turned into braided (Kiss and Sipos, 2007). In this 

process the artificially increased slope and the naturally high bed-load resulted in 

bar formation, especially in the wide braid sections. As these bars were colonised 

by vegetation they developed into downstream migrating islands (Sipos and Kiss, 

2006). The rate of island development and migration depends on the hydrological 

factors and the type of vegetation (Osterkamp, 1998). 

 

The aim of this paper is to quantify river bed changes and to connect them to 

human or natural processes on the Dráva River. Though the border section of the 

river (between Hungary and Croatia) was undisturbed for almost a century, human 

impact became more and more pronounced on the upstream sections and in some 

local points. Between 1975 and 1989 three storage lakes and hydro-power plants 

were built on the Croatian section of the river, just 16 km from the beginning of the 

border-section. These constructions drastically altered the hydrology and the 

sediment characteristics of the river (Kiss and Andrási, 2011). On a local scale cut-

offs, revetments and groynes alter the morphology of the Dráva. The downstream 

effects of these human impacts are not known, though they endanger the wildlife of 

the Duna Dráva National Park. 

 

The above mentioned human interventions have different and superimposing 

effects, therefore the morphological characteristics of the Dráva were analysed 

from different approaches and at different scales. The effects of the dams are long-

lasting but the rate of change is slow. To evaluate them the pattern of the Dráva 

was studied, calculating the vertical and horizontal channel parameter changes 

along a 40 km long section (between 154 and 195 fluvial km). The local 

engineering works have mostly local consequences, thus the aim was to evaluate 

the effects of a cut-off and a groyne-construction on the channel and its forms. To 

evaluate the effects of the local works, the channel changes of a section between 

Bélavár and Heresznye (185-195 fkm) were studied, where a cut-off was made in 

1979-82, while near Vízvár the effect of a groyne (1982) on channel and island 

formation was also measured. 
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2. Study area 

 

The Dráva is the greatest west-side tributary of the Danube in Hungary. Its 

catchment area (40,095 km
2
) is located in the Eastern Alps. On its upper section 

(upstream of Őrtilos) its slope is 0.00080-0.00130, while between Őrtilos and 

Eszék (Osiak) it decreases to 0.00013-0.00035. The medium discharge near 

Maribor (Slovenia) is 300 m
3
/s, and at the inlet it is 653 m

3
/s (Mantuáno, 1974). 

The sediment load of the Dráva is dominated by bed-load. In the reservoirs 95 % of 

the transported sediment is deposited, thus before their construction the yearly 

sediment discharge was 1.08 million t (1967-1975), then after 1989 it decreased to 

0.66 million t
1
.  

 

The regulation works on the river started by levee constructions in the 1750’s 

(Remenyik, 2005), followed by cut-offs in the 1780’s (Majdán, 2008). The 

hydrologic and hydraulic data collection began in 1886. As the result of 19
th
 

century regulations the original length of the lowland section of the Dráva River 

was reduced to 60 %, thus the river became navigable from its conjunction up to 

Barcs (Ihrig, 1973). The last major engineering work was made in 1993-94, when 

two overdeveloped meanders were cut off near Zaláta and Drávasztára. On the 

upper section of the river 22 dams were built, the last was completed at Donja 

Dubrava (Croatia) in 1989. In contrast, the middle – border – section of the Dráva 

is close to its natural condition (Ihrig, 1973). According to the Trianon Treaty 

(1920) the thalweg of the Dráva was declared as the state border-line. However, the 

Dráva has a high energy and very active lateral erosion, thus its course changes 

rapidly. Nevertheless the border-line was not corrected, therefore nowadays the 

channel is located partly in Croatia and partly in Hungary. The special political 

location of the area enabled the survival of natural riparian conditions: the unique 

fluvial morphology (braided pattern and islands) support extremely rich habitats 

and wildlife, which is under the protection of the Danube Dráva National Park. 

 

The study was made along this almost undisturbed border section of the Dráva 

applying different scales. The longer term (1972–2006) research on channel 

changes was made between the Bélavár and Barcs section (154-195 fluvial km) 

evaluating cross-sections, while between Bélavár and Heresznye (185–195 fkm) 

island formation was studied in detail (Fig 1). In the summer of 2008 a side-

channel and an island was studied in detail near Vízvár. 

 

                                                 
1
 http://www.kvvm.hu/cimg/documents/elozetes_kornyezeti_hatastanulmany.pdf 
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Fig.1. The studied 40 km long Dráva reach is located along the Hungarian-Croatian border. On the 

upper quarter of the reach the islands were studied in detail. The aggradation of a side-channel and the 

accumulation of an island were analysed near Vízvár. a: course in 1920; b: course in 2006; c: 

location of cross-section; d: fluvial km 

 

On the studied section the slope of the Dráva is 0.00025-0.00030. The mean 

discharge at Barcs is about 510 m
3
/s, during low stages it is approximately 150 

m
3
/s and during floods it is over 2000 m

3
/s, the ratio between the lowest and 

highest discharge is 13.1 (Mantuáno, 1974). The upper section of the study area 

can be characterised by mostly gravel bed-load transport (Kiss and Andrási, 2011), 

where the greatest grain-size is 55.6 mm, but towards Barcs it is getting 

progressively finer (greatest grain-size: 38.7 mm). This section of the river was not 

systematically regulated, though some groynes and revetments influence the course 

of the river, and near Vízvár a cut-off was made in 1979-82.  

 

 

3. Methods 

 

To evaluate the effects of engineering works cross-sections and islands were 

studied. The cross-sections were surveyed in 1972 and 2006 by the DDKÖVIZIG
2
. 

For each cross-section the bankfull water-level was determined (a.s.l), and from 

this line the depth data were measured in 10 m intervals. The average depth was 

                                                 
2
 DDKÖVIZIG: South Transdanubian Environmental Protection and Water Management 

Directorate 
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defined as the arithmetic mean of the depth data, the cross-sectional area was 

calculated by the sum of depth data multiplied by their interval distance. The 

width/depth ratio refers to the pattern of the channel, if its value is over 50, the 

channel is considered to be braided (Fergusson, 1987). 

 

The changes in the number and area of islands were measured on maps surveyed in 

1972 and 2006 (DDKÖVIZIG). Their geo-correction was made under Erdas 

Imagine 8.4. Islands were digitalised and their area and shape were analysed using 

ArcView 3.2. The elongation ratio (width/length) refers to the energy conditions of 

the river around an island (Sipos and Kiss, 2004). The elongated and narrow 

islands indicate higher energy conditions in their surroundings, than the oval 

shaped or rounded islands.  

 

The development stage of the braids was determined following the definitions of 

Sipos and Kiss (2003). In the first, juvenile stage mid-channel bars develop into 

mid-channel islands. These are getting larger and they shift towards one bank in the 

mature stage. Finally, in the senile stage the large islands get close to the river-

bank, and the side-channel between them aggrades, thus the island submerges into 

the floodplain. 

 

The effect of a groyne on channel aggradation and island development was studied 

at Vízvár, mostly based on field measurements (June 29, 2008, water stage: 51 cm, 

discharge: 585 m
3
/s). The depth conditions of the side-channel were determined by 

radar (accuracy: ±5 cm). The depth was measured along cross-sections in the 

length of a 450 m section of the side-channel. Based on the results a bathymetric 

map of the side-channel was drawn, and the data-set was compared to the cross-

section No. 124/d made in 1972 by the DDKÖVIZIG.  

 

The periods of island formation were defined by dendrology. Poplar and willow 

species occupy the bars higher than the mean water-level (Sipos and Kiss, 2003), 

thus they indicate the beginning of the colonisation of the bar surface, which is the 

date of the island initiation or growth. Sampling was made with tree-borer, the 

trees (68) were sampled along transverse and longitudinal sections. The tree-rings 

were counted under a stereo-microscope. Based on the data an isochrone map was 

drawn. 

 

 

4. Results and discussion 

4.1. Hydrological changes caused by dam constructions 

 

The three Croatian storage lakes and hydro-power plants built in 1975-1989 

influenced the hydrology of the river considerably (Fig 2). The Őrtilos gauging 

station (235.9 fkm) is located upstream of the studied reach, and based on its daily 
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water-stage measurement the changes could be documented. The water stages 

dropped, especially after the dam constructions were completed. The level of the 

annual low water level was dropped from –18 cm to –100 cm during the studied 

period of 1958 and 2009. The annual mean water level decreased from 103 cm to 

36 cm. Flood stages were also influenced, as autumn floods triggered by the 

Mediterranean climate effect disappeared, and spring flood stages decreased. 

Before the construction of the dams the average cumulative length of floods 

totalled 15 days, while after the construction of the last dam at Donja Dubrava it 

decreased to 3 days. 

 

 
Fig. 2. Mean water stages (cm) of 15 year long periods before (1958-1972) and after (1995-2009) of 

the dam constructions (1975-1989) 

 

The duration curves of the water-stages also reflect this decreasing tendency (Fig 

3). Before the construction of the dams water level bellow 0 cm occurred only in 1-

2 % of the year. In the period of 1991-1999 it increased to 58 %, and in the last 10 

years it became 70 %. Simultaneously the duration of high water level decreased.  

 

The drop in water-level could be explained by water storage of the reservoirs, and 

also by degradation of the channel bed (2.8 cm/y) below the dams (Szekeres, 

2003).  
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Fig. 3. Changes in durability (%) of water stages as the result of dam constructions (1975-1989) 

 

 

4.2. Changes in cross-sectional parameters of a 40 km long reach of the Dráva 

River influenced by hydrological alterations 

 

Along the studied 40 km long Dráva reach (from Bélavár to Barcs) 24 cross-

sections were analysed (Fig 1). The repeated surveys (1972 and 2006) enabled us 

to evaluate their spatial and temporal changes. 

 

Spatial changes  

 

In 1972 the average bankfull channel width of the reach was 261 m (Fig. 4A). The 

upper, A-section of the studied Dráva reach (cross-section No. 121-128) was the 

widest, as here the width varied between 120 m and 470 m (average 327 m). The 

width of the B-section (cross-section No. 109-120) decreased to 140-260 m 

(average 216 m). The smaller width of the B-section can be explained by the 

existence of revetments, as they prevent lateral erosion, though the possibility of 

point-bar formation exists. On the lowest, C-section of the reach (cross-section No. 

104-108) the average channel width increased (266 m), but its sinuosity became 

greater as well, indicating meandering channel pattern.  
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Fig. 4. Changes in bankfull width (A), mean depth (B), cross-sectional area (C) of the studied Dráva 

reach between 1972 and 2006. The width changes (D) reflect the widening or narrowing of the reach 
 

The average depth of the studied reach was 4.6 m. The mean depth of the cross-

sections increased downstream (from 3.0 m to 6.6 m). In the upper A-section the 

mean depth varied between 1.3 m and 5.2 m (Fig. 4B). Here the average 

width/depth ratio is 148.2 indicating braided pattern. It is also represented by the 

large number of bars and islands diverting the thalweg. In the B-section the average 

depth of the cross-sections was 3.1-6.3 m, and this parameter increased further in 

the C-section (5.9-8.0 m). Simultaneously the width-depth ratio decreased 

downstream (B-section: 48.9 and C-section: 41.1), indicating intensifying 

meandering pattern. 

 

The maximum depth of the cross-sections varied between 4.4 and 14.8 m showing 

a similar pattern as the mean depth variations. The differences between the 

maximum and average depth values increased towards downstream (from 3 m to 

3.7 m), reflecting a more pronounced thalweg.  

 

The area of a cross-section determines the water conductivity capacity of the 

channel (Fig. 4C). Its average is 1147 m
2
, varying within a wide range (536-2081 

m
2
). This parameter was doubled towards downstream (from 890 m

2
 to 1820 m

2
). 

 

Temporal changes 

 

The average bankfull-channel width of the reach has not changed considerably (+ 1 

m) between 1972 and 2006 (Fig. 4D). In case of the studied three cross-sections 

(No. 105, 110 and 112) no width changes could be measured, however, ten cross-
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sections became wider due to human impact. On the upstream A-section a meander 

cut-off was made in 1979-82 (Fig. 1). The dimension of the new channel was 

designed for smaller slope, as it was supposed to be on a section impounded by a 

never built dam at Barcs-Gyurgyevác (Remenyik, 2005). Due to the straightened 

channel the slope increased, the width decreased, partly because a groyne was built 

simultaneously to close a side-channel. In case of the cross-sections No. 124 and 

125 the channel became considerably wider (490 m and 590 m), as their bankfull 

width increased by 81 % and 31 % respectively. As the result of the upstream 

regulation processes, the lower part of the A-section became wider due to the very 

intensive lateral erosion and the development of braids. The material of the 

eroding, newly developing channel was transported downstream, and it deposited 

in the form of bars and islands, decreasing the depth (1.8-2.3 m), and increasing its 

width/depth ratio (213-315). In B-section (cross-section No. 109-120) the cannel 

became narrower but not everywhere. It can be explained by the newly built 

revetments, which prohibit bank erosion, but enable point-bar formation on the 

opposite bank. The smaller width changes of the C-section (cross section No. 104-

108) reflect that this unit is in the most stable condition, the channel pattern is 

stable and the meandering pattern is not stunted considerably. In contrary, the 

narrowing tendency in part of the A- and B-sections predicts channel pattern shift 

from braided to meandering, though in the area of a cut-off the channel is getting 

more and more braided. 

 

The changes in the mean depth are more uniform. In 1972 the mean depth of the 

reach was 4.6 m, and until 2006 it increased by 0.6 m. Downstream of the cut-off 

(cross-sections No. 123 and 124) the channel became shallower due to aggradation, 

indicating more well-defined braided pattern. However, on the lower B-section 

(cross-section No. 109-120) the depth increased by 1.1 m, the thalweg became 

more pronounced, indicating profound incision. Since the incision and narrowing 

took place simultaneously, they indicating continuous pattern shift from braided to 

meandering, and the process is developing upstream. The narrowing of the channel 

was over-balanced by the simultaneous incision, therefore the cross-sectional area 

increased considerably (from 1147 m
2 
 to 1310 m

2
). 

 

The cross-sectional parameters reflect that the studied reach of the Dráva could be 

considered as a transitional zone between the lowland meandering and upstream 

braided sections. The spatial and temporal comparison of the parameters indicates 

that the meandering pattern proceeds upstream. The metamorphosis of the channel 

can be explained by the dropping water stages and waning floods caused by the 

reservoir constructions. However, local engineering works (e.g. cut-off) surpass 

these changes, and alter the pattern of a shorter section. 
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4.3. Island development on a 10 km long transitional zone influenced by dam 

constructions and a cut-off 

 

As it was represented above, the A-section of the studied Dráva reach remained 

braided even in 2006 (width-depth ratio: 131). As islands and bars are good 

indicators of the braided pattern, their changes were studied in detail. 

 

In 1972 only 12 islands (total area: 51 ha) were located on the A-section of the 

studied reach (Fig 5A), and almost a dozen of bars. These islands were mostly 

elongated (average elongation ratio 4.7) all along the studied section, suggesting, 

that at this time the Dráva had high energy and the change of the islands was quick 

and dynamic. By 2006 (Fig 5B) the number of islands almost doubled (23), their 

territory tripled (175.5 ha). On the upper part of the section their number increased 

considerably, though downstream their number remained constant (Fig 6AB). The 

elongation ratio decreased (average elongation ratio 4.3), wider islands became 

dominant, indicating lower energy conditions. 

 

 
Fig. 5A. The location of the islands and bars in 1972 (A) and 2006 (B) between the 195 and 185 

fluvial km of the Dráva River. a: island; b: bar 
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Fig. 5B The location of the islands and bars in 1972 (A) and 2006 (B) between the 195 and 185 

fluvial km of the Dráva River. a: island; b: bar; c: groyne 

 

 
Fig. 6. The number of islands (A) along the studied reach in 1972 and 2006 and their elongation ratio 

(B). 

 
To analyse these changes in detail, the studied section was divided into 2 km long 

parts (following the fluvial km division of the river). Between the 193 and 195 

fluvial kms two islands existed in 1972. These islands have merged to the banks, 

thus the development phase of this braid could be considered as senile (Table 1). 

By 2006 these islands merged to the banks. The huge island appeared by 2006 

between the 194 and 195 fluvial km is the result of a cut-off (made in 1979-82). 

Probably this great island and the four nearby will disappear, as the side-channel 

separating them will aggrade. Due to the cut-off the development phase of the braid 

quickly reached the senile stage. The small elongation indices, especially in 2006, 

also indicate this process and the energy reduction of the Dráva.  
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Table 1. Changes in the number and type of islands along the studied section, and the development 

phase of their braids 

 1972 2006 

Section 

(f km) 

Type of island Braid 

development 

phase 

Type of island Braid 

development 

phase 

195-193 
submerging 

senile submerging and  

mid-channel 

senile 

193-191 submerging 

and mid-

channel 

mature submerging and  

mid-channel 

(behind groins) 

mature/senile 

191-189 
bars 

juvenile submerging and  

mid-channel 

mature 

189-187 
submerging  

no braid exists submerging and  

mid-channel 

juvenile 

187-185 submerging 

and mid-

channel 

mature 

submerging  

senile 

Total number of islands 12 23 

Total area of islands (ha) 51 175.5 

 

In 1972 there were 5 islands between the 191 and 193 fluvial km, most of them 

were located in the middle of the channel. By 2006 their number increased (9), 

their elongation ratio increased and their location changed. Some appeared in the 

middle of the Dráva, others merged to the bank, but islands also developed behind 

the groynes. Based on their characteristics, the braid could be divided into 

upstream senile and downstream mature part.  

 

On the next section (189-191 f km) only bars appeared in 1972, most of them along 

the banks, and some in the middle of the channel. The existence of these side- and 

mid-channel bars shows a juvenile stage of the section. By 2006 the bars were 

developed into islands, and the braid turned to a mature stage. 

 

Two islands were surveyed in 1972 on the next section (187-189 f km), reflecting a 

senile braid development stage. However, by 2006 two mid-channel islands and a 

mid-channel bar appeared in the braid, which became juvenile again. 

 

On the lowest section (187-185 f km) three islands were formed in 1972, two of 

them in the middle of the channel, and the third have merged to the bank. The 

number of the islands has not changed by 2006, but their area increased 

considerably, their elongation ratio decreased. The braid remained in its 

mature/senile stage. Here the changes are in connection with the metamorphosis of 



70 

 

the river: a meandering pattern is developing, the cannel is getting more sinuous, 

and the islands were developed on the point-bar surfaces. 

 

As it was shown above the number of islands was doubled between 1972 and 2006, 

and their territory increased by 3.5-fold. The braid development stages of the 

section suggest that the braids are reviving. It can be partly explained by the cut-off 

which supplies more sediment for the formation of bars and islands, especially in 

the upper part of the section. Besides, the increase in their area can be explained by 

the drop of water stages, as it provided new bar surfaces for island development. 

The similarity in elongation indices along the reach in 1972 can be described the 

equilibrium conditions between the morphology and the hydrology of the river. By 

2006 this has changed, as the elongation ratio became different in the sections, 

referring to threshold conditions, where the equilibrium of the river was disrupted, 

and the re-arranging of the hydro-morphology of the river had started. 

 

 

4.4. Effect of a local engineering work: aggradation caused by a groyne 

 

Aggradation of a side-channel 

 

The effects of local engineering works are superimposed by additional human 

impact. The consequences of a groyne on channel aggradation were studied near 

Vízvár (Fig 1 and 7AB). In 1972 the studied side-channel was almost as large as 

the main channel. Based on the data of an upstream cross-section (No. 124/d) the 

width of the side-channel was 140 m (main channel: 120 m), while its average 

depth was only 2.3 m (main channel: 5.8 m), and its maximum depth 3.0 m. The 

cross-sectional area of the side-channel was 360 m
2
, indicating considerable 

contribution in water conductivity. Then, in 1982 a groyne was built at the 

confluence of the side channel, in order to support the development of the upstream 

cut-off by closing this important side-channel. The same cross-section was not 

surveyed in 2006 by the DDKÖVIZIG, so we made measurements along the 

former cross-section, and within the side-channel to demonstrate the effect of 

groyne construction. 

 

By 2008 the average width of the side-channel decreased to 47 m, indicating 

considerable (65 %) narrowing. The average depth along the former cross-section 

decreased to 1.2 m (by 48 %). The depth of the thalweg (the deepest point) was 3 

m in 1972, but it also decreased to 2.1 m (by 30 %). The most obvious change was 

measured in the cross-sectional area, which was reduced to 70 m
2
, indicating 80 % 

channel-capacity loss in 26 years. Considering these data, the rate of channel 

aggradation was 5 cm/y (channel capacity loss: 2 %/y). Calculating with this rate, 

the side-channel will loose its function within 25 years. However, as it will be 
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shallower the amount of transported bed-load will also decrease, thus this final 

stage of its development might last longer. 

 

A B 

 
 

Fig. 7. The effect of a groyne on channel and island development was studied near Vízvár. In 1972 

(A) islands (a) and bars (b) appeared in the study site (c). In 2006 (B) the morphology of the river was 

altered by groynes (d). 

 

The depth conditions of the studied side-channel show, that the river was shallower 

than 1.0 m over large areas of the river-bed (Fig. 8). Therefore, at very low stages 

the two bordering islands would join, and their areas would increase significantly. 

Behind the groyne a large mid-channel bar was formed exceeding the water level 

most of the year. The thalweg within the side-channel was deeper (over 1.5 m), it 

had a meandering pattern, which was especially obvious during lower stages. The 

meandering thalweg moved close to the banks, initiating bank erosion. The outlet 

of the thalweg was narrow and deep as it confined to the groyne and joint to the 

main channel. Besides, the very end of the groyne diverted the current of the main 

channel, thus during higher stages these currents erode the outlet section of the 

side-channel. 

 

These measurements show that after an engineering work the channel change 

considerably: even a wide side-channel could loose its function by aggradation. At 

the same time its originally braided pattern (width/depth ratio: 52.1) altered 

towards meandering, as it is indicated by the meandering thalweg and the smaller 

width/depth ratio (39.1). 

 

Island development 

 

In order to determinate the exact age, thus the hydro-morphological change of the 

Dráva River, one island was studied in detail (191-192 f km). In 1972 this island 

did not exist, but upstream of its present location a large gravel-bar was surveyed 

(Fig. 7AB). On the 2006 map the island already developed. If the side-channel 

aggradation is quick, this island will submerge to the large island upstream within 

years. 
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The island could be classified as mid-channel island when it was formed and the 

side-channel was almost as wide as the main one. Its elongation ration is small 

(2.96), thus now lateral erosion is superseded by lateral aggradation. The island 

itself consists of two submerged islands, the chute between them is continuously 

aggrading. The erosional marks on its surface indicate the direction of flood-

currents, and they were probably formed when the vegetation was not very dense 

on the island. The horizontal accumulation is greater on northern part of the island, 

as this part is bordered by the dying side-channel, where the erosional activity is 

weak. 

 

 
Fig. 8. Depth conditions of the studied side-channel in 2008 (water-level stage at Barcs station was 51 

cm) 

 

The accumulation periods of the island were determined by dendrology: the age of 

the trees indicate the minimum age of the island’s surface, before the surface was 

just a gravel-bar, inundated by high and medium water stages. Nowadays flood-

waves higher than 300 cm (frequency: 5 %) inundate the island.  

 

Based on the ages of the tree an isochrone map was created (Fig. 9), and the 

periods of island accumulation were compared to the yearly highest water levels. 
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The oldest tree on the island started to grow in 1992. Thus, the gravel bar, which is 

the core of the island, was probably formed during the 1989 flood. The next three 

years were flood-free, providing excellent conditions for the colonisation of the 

riparian vegetation. This process was repeated, thus during flood new bar surface 

was connected to the island and its surface was heightened by overbank floods, and 

in the following low-water periods riparian vegetation invaded the surface of the 

bar. The largest bar surface joint to the island during the floods of 1998-99, and it 

was colonised between 2000 and 2002. 

 
Fig. 9. Isochrone map of island development near Vízvár. a: submerged side-bar; b: aggrading 

chute; c: erosion; d: accumulation; e: sampled tree 

 

Comparing the spatial development of the island to others studied islands on the 

Maros (Sipos and Kiss 2003) it is worth to note, that the location of erosion and 

accumulation differs. On the Maros River the front of the island (facing upstream) 

erodes and their downstream end accumulates. Here the situation is the opposite: 

the upstream end of the islands is the scene of accumulation, while the downstream 

part is eroding. It can be explained by the different bed-load, as the Dráva 

transports mostly gravels, while the bed-load of the Maros is sandy. The gravels 

aggrade easier, as soon as the stream power decreases, which is the case in front of 

the islands, where the current is dissected. Besides, the studied island is situated in 

a very special location, behind a larger island and in front of a groyne, which might 

provide an irregular sedimentary environment. 

 

 

5. Conclusions 

 

On the studied section of the Dráva River distant (reservoir construction) and local 

(cut-off and groyne) human impact influence the hydro-morphology of the river. 

As the result of dam constructions the hydrology was altered, the water stages 

dropped, lower stages became more frequent and the floods almost disappeared. 
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These hydrological changes produced the morphological alteration of the river. The 

upper part of the studied Dráva reach was braided and the lower section 

meandering before the construction of the Croatian dams and reservoirs. As they 

reduced the water level, meandering pattern shifted upstream and became more 

pronounced. It was indicated by the narrowing channel and incising thalweg. As 

bar surfaces were exposed due to the lower stages, the vegetation colonised their 

surfaces and new islands were formed on the upper section (in the transitional zone 

between the braided and meandering parts). The number of islands was doubled 

between 1972 and 2002 on the section between Bélavár and Heresznye, their 

territory increased from 51 ha to 174.5 ha. They shape became more rounded, 

indicating the decreasing erosional activity of the Dráva. The braids got to their 

mature and senile development phase, indicating the decline of the braided pattern. 

 

However, local engineering works also influenced the upper part of the studied 

reach, where a cut-off and groyne were built. The cut-off resulted intensive lateral 

and vertical scour, thus the produced large amount of bed-load. Downstream of the 

cut-off a short section became wider and shallower, as the cut-off increased the 

slope and the sediment discharge. On this section the braided pattern became 

dominant, despite of the above described river-metamorphosis.  

 

The effect of groyne is manifested in side-channel aggradation and intensive island 

formation. The blocked side-channel looses ca. 2 % of its water conductivity 

capacity each year. The intensive narrowing of the side channel gives way to lateral 

growth of the islands. Applying this rate to the side-channel accumulation, its 

remaining life-time is approximately 25 years. 
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