
AGD Landscape & Environment 4 (1) 2010. 1-10. 
 

 1 

 
MAPPING AQUATIC VEGETATION OF THE RAKAMAZ-
TISZANAGYFALUI NAGY-MOROTVA USING HYPERSPECTRAL 
IMAGERY 

 
PÉTER BURAI1 – GABRIELLA ZSUZSANNA LÖVEI2 – CSABA LÉNÁRT3 – ILDIKÓ NAGY4 – 
PÉTER ENYEDI5 
 
1Károly Róbert Collage, Faculty of Natural Resources Management and Rural Development, Institute 
of Agroinformatics and Rural Development, H-3500 Gyöngyös Mátrai út 36., Hungary, E-mail: 
pburai@karolyrobert.hu; 2University of Debrecen, Department of Hydrobiology, H-4032 Debrecen, 
Egyetem tér 1., Hungary, E-mail: loveigabby@gmail.com; 3Károly Róbert Collage, Faculty of 
Natural Resources Management and Rural Development, Institute of Agroinformatics and Rural 
Development, HU-3500 Gyöngyös Mátrai út 36., Hungary, E-mail: lenart@karolyrobert.hu; 
4University of Debrecen, Faculty of Agricultural and Food Sciences, and Environmental 
Management, Department of Water and Environmental Management, H-4032 Debrecen, 
Böszörményi út 138., Hungary, E-mail: inagy@gisserver1.date.hu; 5Envirosense Hungary Ltd, H-
4028 Debrecen, Kassai út 129., Hungary, E-mail: enyedi@envirosense.hu 
 
Received 10 August 2010; accepted in revised form 9 October 2010 
 
 
Abstract 
Rapid development in remote sensing technologies provides more and more reliable methods for 
environmental assessment. For most wetlands, it is difficult to walk-in without disturbing the 
endangered species living there; therefore, application of opportunities provided by remote sensing 
has a great importance in population-mapping. One effective tool of vegetation pattern estimation is 
hyperspectral remote sensing, which can be used for association and species level mapping as well, 
due to high ground resolution. The Rakamaz-Tiszanagyfalui Nagy-morotva is an oxbow lake, located 
in the north-eastern part of Hungary. For this study, a wetland area of 1.17 km2 containing the original 
water bad and shoreline was selected. For the image analysis, images taken by an AISA DUAL 
system hyperspectral sensor were used. At the same time, 7 main vegetation classes were separated, 
which are typical for the sample plot designated on the test site. Classification was performed by the 
master areas signed by the most common associations of the Rakamaz-Tiszanagyfalui Nagy-morotva 
with determined spectrums. During the image analysis, SAM classification method was used, where 
radian values were optimized by the results of classification performed at the control area.  
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1. Introduction 
 
Hungary, thanks to its geographical position, has unique facilities in Europe in 
respect to wetlands. Despite the river control, there are number of different oxbow 
lakes in the Great Plains, which more or less preserved their natural wildlife and 
landscape image. For the majority of wetlands, it is difficult to walk-in without 
disturbing the endangered species found there, and make an accurate vegetation 
estimation with ground based tools. However, rapid development of remote sensing 
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technologies provides more reliable methods for environmental assessment. 
Nowadays, for vegetation mapping and plant covering mapping of the domestic 
flood plain, data of satellite images are applied primarily. For the assay of the 
surface cover, and determination of the different ecological morphological types, 
Landsat satellite images were used e.g. by Szabó et al. (2004), in case of 
Bodrogköz. However, in order to create species-level maps, images with larger 
spatial and spectral resolution are needed (Rosso et al., 2005). During testing, 
Tamás et al. (2006) established the spatial spread of weed associations on a sample 
plot on the Great Plain, and concluded that weed mapping by time series 
LANDSAT satellite images has low reliability, because of the low geometric 
resolution of the images and high spatial heterogeneity of the plants. Today’s 
satellites may not have sufficient resolution, either spatially or spectrally to monitor 
wetland. An effective tool of the exact vegetation estimation can be hyperspectral 
remote sensing, which may be used for the association and species level mapping 
as well by high terrain resolution (Hamada et al., 2007; Hirano et al., 2003; 
Underwood et al, 2003; Underwood, 2006). Underwood et al. (2007) mapping of 
invasive plants had shown that the higher spectral and spatial resolution 
significantly improves the reliability of classification, to the point, while the spatial 
diversity of the examined characteristic is not higher than geometric resolution of 
the image. Analysis of these large data sets required developing specialized 
methods. Roberts et al. (1998) argued the need for regionally specific spectral 
libraries for semi arid ecosystems, and Hirano et al. (2003), Schmid et al. (2004), 
Zomer et al. (2009) for wetlands. Hyperspectral data requires improved 
methodologies and tools that facilitate analyses and mapping which can be 
specifically applied to wetlands requirements.  
 
 
2. Materials and methods 
 
The Rakamaz-Tiszanagyfalui Nagy-morotva is an oxbow lake located in the north-
eastern part of Hungary. A wetland area of 1.17 km2 containing the original water 
bad and shoreline was selected (Fig. 1). 
 
The major part of the study area is covered by aquatic vegetation and this plant 
mass cause huge organic matter load reproduced yearly, thereby timely 
accelerating sedimentation. On major part of the oxbow lake, significant macro-
vegetation can be found with notable aquatic plants. For the selection of training 
sites used for image classification, representative vegetation types were appointed 
by GPS on terrain visit. 
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Fig. 1. Rakamaz-Tiszanagyfalui Nagy-morotva on the hyperspectral mosaic 
 
Major vegetation types and their dominant and subdominant species were 
identified. By training sites, classes that should be given for the classification 
algorithm as input parameters had to be defined. In field, 7 main dominant species 
were separated, which are typical for the sample plot designated on the oxbow lake 
(Table 1). Separation of the classes was carried out based on the dominant species. 
Training areas covering the searched dominant species in more than 75%, for the 
sample were assigned. As training area classes and species that create association 
were designated. 
 
Table 1. Dominant and subdominant species of Rakamaz-Tiszanagyfalui Nagy-morotva 
Abbreviation Dominant species Subdominant species 
SALIX Salix sp. Phragmites australis, Typha angustifolia 
TYPHA Typha angustifolia Phragmites australis, Lemna sp. 
STRATIOTES Stratiotes aloides Trapa natans, Lemna sp. 
PHRAGMITES Phragmites australis Typha angustifolia 
TRAPA Trapa natans Ceratophyllum sp., Lemna sp. 
CERATOPHYLLUM Ceratophyllum sp. Stratiotes aloides, Lemna sp., Trapa natans 
NYMPHAEA Nymphaea alba Trapa natans, Lemna sp. 

 
Hyperspectral imaginary was performed by AISA DUAL system hyperspectral 
sensor, which was put in operation in 2006, in cooperation of University of 
Debrecen Centre of Agricultural and Technological Sciences, Department of 
Water- and Environmental Management with FVM MGI Institute of Gödöllő. The 
sensor is able to collect data in the 400-2450 nm wavelengths range, by 1.25-10 nm 
bandwidth, and 0.5-3 m terrain resolution (Deákvári et al., 2008). First domestic 
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use of the images taken by this sensor was in 2006, till then, they were mainly used 
in precision agricultural and environmental protection researches (Milics et al, 
2008). DUAL sensor was used for the whole sample area in VNIR range (400-1000 
nm), 5nm (12 bit), while in SWIR range (1000-2450 nm) with 6nm (14 bit) spectral 
resolution, with 1.5m ground resolution, from 1128 m flight altitude, with 444 m 
bandwidth and 30% overlapping. Towards the precise geometry, a high-precision 
OxTS 3003 type GPS/INS system was used for the collection of navigation data. 
Flight time of the sample area was on 19th June, 2009, in 9:30-12:30 period (GMT), 
and 4 images were taken at the sample area. 
 
The first step of data processing was performed with the application of Caligeo 
4.9.7 version program developed by Specim, in which the primary radiometric and 
geometric corrections were calculated. During the radiometric correction, data of 
the raw images (DN) were accounted to physical radiometric value (16 bit) by the 
program (radiance). Calculation of direct georeference was performed also in 
Caligeo program with the navigation data from GPS/INS system, digital terrain 
model (SRTM) and other external parameters (boresight values, external DGPS 
data). Boresight calibration was used for calculation of the angle deviation between 
GPS/INS system and the axis of the sensors, which was determined by CaliGeo 
processing software in first step, then by progressive iteration calculated for terrain 
DGPS points. With the refined boresight values, geometric accuracy calculated at 
the control points was RMSE = 1.06. Process of the pre-processing mechanism is 
represented in Fig. 2. 
 
ENVI 4.4 (Environment for Visualization of Images ENVI; ITT Visual Solutions) 
program was used for image processing, post processing and raster-vector 
conversion. Other vector operations were carried out in ArcGIS 9.2 environment. 
 
 
3. Results 
 
As a first step of image analysis, band selection was applied; when 259 channels 
were selected form the 359 channels of the original image. Ranges, having high 
absorption due to the atmospheric absorbents, or scattering were excluded from the 
further study. Further classification algorithms were not taken into account during 
the application, designated range used for the atmospheric correction and "noisy" 
channels that can be seen visually. More noise, or dimension reduction was not 
used in the image. Using SAM classification with Minimal Noise Fraction 
transformation on AISA images has no more accurate result, than calculations with 
the original images (Mucsi et al., 2008). 
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Fig. 2. Workflow of radiometric and geometric correction 
 

 
Fig. 3. Subset of the classified image (SAM) 
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Conventional classification methods, such as the Gaussian Maximum Likelihood 
algorithm cannot be applied to hyperspectral images due to the high dimensionality 
of the data and the relatively small number of available training samples (Chi et al., 
2008). For teaching area classification, „Spectral Angle Mapper” – SAM method 
was applied. This method regards spectrums to n-dimensional vectors - where n is 
the number of spectral channels - and calculates the angle between them. The 
method is less sensitive to deviations due to intensity difference caused by the 
different lighting conditions of the pixel-points of the images. Smaller angles 
represent closer matches to the reference spectrum. From the traning area, 
spectrum belonging to the requested property was determined, thus a spectral 
database was created (endmember collection). Mean reflectance spectra were 
calculated from the selected training areas (Fig. 4). 
 

 
Fig. 4. Mean reflectance spectra of different classes 
 
After band selection and masking of the sample area, image analysis algorithm was 
run per track. First 0.1 radian value was proposed by the basic settings of the 
software during the analysis, than by reclassification of the control area, radian 
value, which gives the most reliable classification result, was determined with 0.01 
radian increments. For validate the accuracy of the classification, error matrix was 
applied (Table 2).  
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Table 2. Error matrix (%) of SAM classification method (Rows are came from classified images) 

CLASS SALIX TYPHA 
STRATI-
OTES 

PHRAG-
MITES TRAPA 

CERATO-
PHYLLUM NYMPHAEA 

SALIX 91.41 0.00 2.06 4.08 0.00 0.00 0.00 
TYPHA 0.00 92.50 30.29 8.16 0.00 0.00 0.37 
STRATIOTES 0.00 1.25 30.88 0.00 1.24 23.93 6.96 
PHRAGMITES 8.59 5.00 0.00 87.76 0.00 0.00 0.00 
TRAPA 0.00 1.25 34.41 0.00 91.91 0.31 30.40 
CERATOPHYLLUM 0.00 0.00 0.00 0.00 0.13 73.01 0.73 
NYMPHAEA 0.00 0.00 2.35 0.00 6.72 2.76 61.54 
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 
The accuracy of classification can be seen in the major diagonal of the error matrix 
(production accuracy). Non-classified areas were not taken into account in the 
error matrix. By the results of the classification, it can be stated that reliable results 
were achieved in the classification in case of the woody willow (Salix sp.), the 
broad-leaved reed mace (Typha angustifolia), reed (Phragmites australis), and 
water chestnut (Trapa natans), however, the applied method was less accurate in 
case of the hornworts (Ceratophyllum sp.) and white lily (Nymphaea alba) 
association. In case of water soldier (Stratiotes aloides), number of misclassified 
pixels was higher in the control area, than correctly classified ones. Increase in the 
value of SAM radian did not improve significantly the accuracy of classification in 
this case, however, it increased the incorrectly classified areas of other classes 
(Table 3).  
 
Table 3. Accuracy of classification (SAM) 

Class Commission 
(%) 

Omission 
(%) 

Production 
Accuracy 

(%) 

User 
Accuracy 

(%) 
SALIX 3.04 8.59 91.41 97.21 

TYPHA 60.01 7.50 92.50 39.78 

STRATIOTES 54.74 69.11 30.88 45.26 

PHRAGMITES 31.74 12.24 87.76 68.25 

TRAPA 8.60 8.09 91.91 91.40 

CERATOPHYLLUM 2.01 26.99 73.01 97.94 

NYMPHAEA 50.88 38.46 61.54 49.12 

 
The overall performance of classification was correct with overall accuracy of 
78%, and kappa coefficient of 0.63. Each area of classes was calculated based on 
the classified images (Table 4). 
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Table 4. Estimated areas of classes, based on the results of classification 

Class Area 
(m2) 

Area 
(%) 

SALIX 151133 19.86 

TYPHA 60822 7.99 

STRATIOTES 38360 5.04 

PHRAGMITES 188345 24.75 

TRAPA 199690 26.24 

CERATOPHYLLUM 58522 7.69 

NYMPHAEA 64145 8.43 

SUM 760017 100 

 
From the target area, 0.76 km2 (65.1%) was classified, while the residual area 
contains particularly open water surface and mixed pixels. According to the 
vegetation map, water chestnut (Trapa natans) makes contiguous floating 
vegetation particularly in swallow water body. White lily (Nymphaea alba) and 
water soldier (Stratoides aloides) make small isolated or mixed spotted 
associations. Woody willow (Salix sp.) and reed (Phragmites australis) are 
dominant in the shore area. 
 
 
4. Discussion 
 
This study illustrates the potential for wetland assessment using advanced aerial 
hyperspectral imagers, and applications for vegetation community monitoring. 
Classification, applied for the sample area represents 82.7% accuracy by the data of 
the control areas, which can be considered good in the case of a mixed compound 
aquatic ecosystem. The accuracy of the classification was better than 90% in 3 
categories, lower accuracy was received in case of 3 categories (87.7%, 73.0%, and 
61.5%). Differences mainly arose from the structure of the vegetation, since the 
water chestnut (Trapa natans) association composed almost homogeneous and 
closed association in most cases, while the white lily (Nymphaea alba) and 
hornworts (Ceratophyllum sp.) composed stain form and mixed association with 
other species. However, in case of water soldier (Stratoides aloides) association, 
classified image was equaled to control area in 30.88%. If the average size of the 
stain size is considered, the classification accuracy of associations with smaller 
stain size is lower than associations that have larger connected stains. For the 
extension of classification to other areas, development of spectral library evolved 
specially for wetlands would be required, which justify further development of the 
terrain spectrophotometry measurements and atmospheric correction, particularly 
by the reason of the reduction of atmospheric effects. The ability to monitor 
vegetation at higher spatial and spectral information allows changes in vegetation 
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composition to be accurately mapped using advanced geospatial methods. Future 
efforts will focus on to develop a spectral library for wetland vegetation. 
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