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Abstract

Uttarakhand has a highly diverse topography, with snow-covered peaks, deep canyons, roaring streams,
and dusty plains, all drained by various rivers of the Ganges system, India. The present study prioritizes
watersheds in the Uttarakhand Himalayas for flood susceptibility using the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) method, supported by GIS and remote sensing data.
ALOS PALSAR Digital Elevation Model (DEM) with 12.5-meter resolution was utilized to map topographic
features and to analyze 18 morphometric parameters of 28 watersheds. The TOPSIS method prioritized
sub-watersheds using AHP criteria weights, which are classified into five priority levels ranging from
very low to very high. The Sarju, Ram Ganga, and Song watersheds were identified as having the highest
flood risk, placing them in the “Very High” priority class. These watersheds exhibited high drainage
density (Dd), stream frequency (Fs), and bifurcation ratio (Rb), indicating a dense and complex drainage
network prone to rapid runoff and increased flood potential. The watersheds such as Bandagarh, Parry,
and Chandra Bhaga were placed in the “Very Low” priority class due to lower closeness coefficient (Cci)
values, suggesting simpler drainage systems and reduced flood risk. The AUC (Area Under Curve) value of
0.789, indicates a good predictive accuracy for the TOPSIS model. The classification helps in pinpointing
high-risk areas that require urgent flood management interventions.
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1. Introduction

River floods occur when the water level
in a river or stream surpasses its capacity,
causing the water to overflow onto the
surrounding land and the flood risk is the
probability of a flood happening and the
potential impact it could have on people,
property, and the environment (Merz et al,,
2021). Floods are one of the most devastating
types of extreme weather events. Between
1995 and 2015 all over the world, more
than 2.2 billion people were impacted by

floods, accounting for 53% of all individuals
affected by weather-related disasters (United
Nations, 2015). Floods also pose a significant
vulnerability to India. Approximately 40
million hectares of the whole geographical
area of 329 million hectares are susceptible to
flooding. Annually, floods impact an average
of 7.5 million hectares of land, resulting in
the loss of 1600 lives and causing damage
to crops, settlements, and public services
amounting to 18050 million (National
Disaster Management Authority Government
of India, 2024).The Uttarakhand Himalaya,
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one of the integrated parts of the Himalaya,
is the most fragile landscape and prone to
geo-hydrological hazards such as floods
(Sati & Kumar, 2022). In the recent past
Uttarakhand experienced very heavy non-
seasonal rainfall on 17, 18 and 19 Oct 2021,
causing 79 persons dead, 24 injured and 03
missing and 1397 persons were evacuated
by National Disaster Response Force (NDRF)
(IAG Uttarakhand, 2021). Thus, prioritizing
watersheds based on flood risk is crucial for
effective flood management in this region.

Numerous studies have investigated flood
hazards and vulnerabilities by utilizing
diverse approaches (Baky et al, 2020; Ferk
et al.,, 2020; Ghosh & Ghosal, 2021; Komolafe
etal,, 2021; Shah et al,, 2018). But the recent
studies evident that remote sensing and GIS
techniques have been widely employed for
flood inundation mapping (Aichi et al., 2024;
Desalegn & Mulu, 2021; Diriba et al., 2024;
Khoirunisa et al., 2021; Saikh & Mondal,
2023). Also, the multi-criteria decision-
making methods have gained traction for
flood susceptibility assessment (Dano et al.,
2019; Ekmekcioglu et al., 2021; Lee et al,
2015; Mitra & Das, 2023). Several national
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and international studies have highlighted
the TOPSIS model as an effective and
appropriate method for prioritizing areas of
study (Abdolazimi et al., 2021; Ekmekcioglu
et al., 2021; Jozaghi et al., 2018; Luo et al,,
2024; Meshram et al, 2020; Mitra & Das,
2023; Patel et al,, 2022; Pathan et al., 2022;
Shirani & Zakerinejad, 2021). However,
research specifically focusing on prioritizing
watersheds for flood risk reduction in the
Uttarakhand Himalayas using a combination
of geospatial techniques and the TOPSIS
method remains limited. This study aims
to develop a comprehensive framework for
prioritizing watersheds in the Uttarakhand
Himalayas based on their flood risk. The
research involves a multi-stage approach,
beginning with the delineation of watersheds
using ALOS PASAR Digital Elevation Models.
Following this, morphometric analysis will
be conducted to quantify various watershed
characteristics, that helps to understand
hydrological and geomorphological processes
by analyzing the geometric properties of
a drainage basin or watershed, such as
shape, size, relief, and spatial arrangement
(R. E. Horton, 1945; S. Schumm, 1950; A. N.
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Strahler, 1952). The Analytical Hierarchy
Process will be employed to assign weights to
each parameter. Finally, the TOPSIS method
will be applied to rank the watersheds based
on their weighted flood risk indices, derived
from the morphometric analysis and AHP
weighting.

2. Study Area

Uttarakhand, located in the northern
part of India, lies between 28.7347° N to
31.2914° N and 77.5788° E to 81.0109° E
(Fig. 1). The state is characterized by its
diverse topography, ranging from the low-
lying plains of the Terai region in the south
to the high Himalayan peaks in the north.
The state experiences a range of climates
due to its varying elevations. The lower
regions have a subtropical climate, while the
higher areas have an alpine climate with cold
winters and mild summers. The monsoon
season from June to September brings
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heavy rainfall, especially in the hilly areas,
which can lead to landslides and floods.
Geologically, Uttarakhand is a part of the
Himalayan Mountain range, characterized
by young folded mountains and deep valleys.
Uttarakhand is known for its numerous
rivers, which are crucial to the region’s
ecosystem and agriculture. The major rivers
include the Ganges, Yamuna, Bhagirathi,
Alaknanda, and Kali, which flow through
the state, providing water for irrigation and
hydropower generation.

3. Materials and Methods

Data Base

In this study, researchers employed a
multifaceted approach, combining Remote
Sensing (RS) techniques with Geographic
Information System (GIS) methods to
meticulously gather quantitative data on
various basin features and thematic layers.
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Table 1. Morphometric parameters with their respective formulae
S.No. Parameters Symbol Formula Reference
Linear Aspects
Finger tips streams are called “first order”.
1 Stream Order Su Two first order streams join to form second (A.N. Strahler, 1964)
order stream; two second order streams
join to form a third order, and so on.
2 Stream Nu Number of streams on any particular order.  (R. E. Horton, 1945)
Number
Bifurcation Rb =Np / Np+ 1 Where, Nu = No. of stream
3 . Rb segments of a given order and Nu + 1= No. (S. Schumm, 1956)
Ratio .
of stream segments of next higher order.
Mean Rbm = A bifurcation ratios ofall  (A. N. Strahler, 1964)
4 Bifurcation Rbm m = Average of bifurcation ratios of a .N. Strahler,
. orders
Ratio
Areal Aspects
Area from which water drains to a common
5 Basin Area A stream and boundary determined by (A-N.Strahler, 1964)
opposite ridges.
6 B.asm p P = Outer bounda.ry gf drainage basin (S. Schumm, 1956)
Perimeter measured in kilometres.
7 Basin Length Lb Length from origin of stream to its mouth. (S. Schumm, 1956)
Stream The ratio of the total number of streams
8 Fs (Np) of all orders in a catchment and the (A. N. Strahler, 1964)
Frequency .
basin area.
. Dd = Lu /A Where, Lu = Total stream length . .
9 DS;;I;?ge Dd of all orders and A = Area of the basin (8. Sml%l 98;)Smgh’
ty (Km?).
Drainage Dt=Np / P Where, Nu = No. of streams in a
10 Texture bt given order and P = Perimeter (Kms). (R E. Horton, 1945)
Rf = A / Lb2 Where, A = Area of basin and
11 Form Factor Rf Lb = Length of basin, (R. E. Horton, 1945)
Elongation Re = VA /7 / Lb Where, A = Area of the
12 Ratio Re basin (Km2) Lb = Basin length (Km). (S. Schumm, 1956)
Circularity Rc = 4mA / P2 Where, A = Basin area (Km?)
13 Ratio Re and P = Perimeter of the basin (Km). (Sharma etal, 2013)
Relief Aspects
Bh = H - h Where, H = Maximum elevation of (Rudraiah et al
14 Basin Relief Bh the basin (m) and h = Minimum elevation of v
. 2008)
the basin (m).
. . Rr = H / Lb Where, H = basin relief (m) and (Rudraiah et al.,
15 ReliefRatio  Rr Lb = Basin length (m) 2008)
Ruggedness Rn = Bh X Dd Where, Bh = basin relief and
16 Number Rn Dd = drainage density. (S. Schumm, 1956)
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Delving into the intricate topography of the
basin, researchers accurately mapped out the
relief and slope characteristics utilizing an
ALOS PALSAR Digital Elevation Model (DEM)
with an impressive resolution of 12.5 meters,
sourced from the Alaska Satellite Facility
(ASF) (https://asf.alaska.edu/). Drawing
upon historical cartographic resources,
the study utilized topographical maps of
Uttarakhand meticulously crafted at a scale
of 1:50,000 by the Survey of India (Sol) in
2007. Additionally, the study benefited from
the utilization of geological maps provided by
the Geological Survey of India.

Methodology

The ALOS PALSAR DEM (Digital Elevation
Model) was instrumental in delineating
the boundaries of the drainage basin and
generating slope and contour maps. To
ensure accuracy and compatibility, the ALOS
PALSAR DEM was georeferenced using
ArcGIS software and projected onto the
UTM coordinate system, specifically WGS
1984 Zone 44/N. The initial steps involved
in extracting the drainage network included
gap filling within the DEM and subsequent
calculation of slope, flow direction, flow
accumulation, and stream order. These
tasks were efficiently carried out using tools
available in the spatial analyst and ArcHydro
sections of the ArcToolbox. In this study,
a comprehensive set of 16 morphometric
parameters were considered to characterize
the geometric features of the drainage basin
(Table 1). The analytical framework for
assessing drainage networks drew upon
principles proposed by Horton in 1945, while
the stream ordering approach developed by
Strahler in 1964 was employed to determine
the order of the streams (Kumar & Jayappa,
2011). With the use of the AHP and TOPSIS
MCDM models, a total of 28 watersheds
of Uttarakhand Himalayas (Fig. 2) ranked
in terms of their importance for flood risk
assessment.

AHP

The Analytic Hierarchy Process (AHP) is
a multicriteria decision-making method that
begins with identifying criteria relevant to
the prioritization, such as morphometric
parameters and flood susceptibility factors
(Arulbalaji et al, 2019; Hembram & Saha,
2020). These criteria are then compared
pairwise to establish their relative
importance, using a scale from 1 to 9 based on
Saaty’s fundamental scale. The consistency
of these judgments is evaluated through
consistency ratios to ensure the reliability of
the comparisons made. The criteria weights
are calculated by synthesizing the pairwise
comparison matrices using the eigenvector
method. These weights are used to calculate
the overall scores of the watersheds based
on the criteria, allowing for their ranking to
determine their priority levels for flood risk
assessment and mitigation.

3.2.2. TOPSIS Method

The Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) method
prioritizes watersheds for flood susceptibility
assessment by assigning weights to various
morphometric parameters based on their
significance in flood occurrence (Alvandi
et al., 2021; Mohammadi et al., 2022). This
method ranks watersheds according to their
proximity to the ideal solution and farthest
distance from the negative ideal solution,
categorizing them into different classes based
on their performance scores. The following
are the steps to rank watersheds using the
TOPSIS Method.

1. Calculating the normalized decision

matrix.
al-]-
Rij =
\/E?llaizj

where, Rij is a normalized decision matrix
element and a, is the i" alternative
performance in jth criteria.

2. Calculation of the weighted normalized
decision matrix.
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Vii=Rij X wj

where, Vij is weighted normalized matrix
element, Rij is normalized matrix elements,
and Wj is weight of criteria j.

3. Determining the positive ideal solution
(PIS) and negative ideal solution (NIS)

A* = {(maxvy|j € J), (minVyj € )i = 1,2, .....m}
= VLV VS LV L
A~ = {(maxvy|j € ), (minvy|j € ))i = 1.2, .....m}
=0V Vs, Vi Vi

where, j and ] are related to increasing and
decreasing criteria, respectively.

4. Measuring the ideal and negative ideal
solution distance(

2 .
dip = VI, (Vi — V") 5i=12,...m

dio = VYV — V) Si=12,m

5. The final step is to compute the closeness
coefficient. This coefficient indicates how
close each alternative is to the ideal solution.
d;- ;

= — 0<elis<1; i=
cliy flr++di-’0 cli<l;i= 12, ..m.
where, cli+ is closeness coefficient, di+
is positive ideal solution (PIS), and di- is
negative ideal solution (NIS).

3.2.3 AUROC

The Area Under the Receiver Operating
Characteristic Curve (AUROC) is a widely
used statistical method to validate the
predictive performance of a classification
model, especially when the model outputs
probabilities  or  continuous  scores.
AUROC quantifies the model’s ability to
discriminate between two classes, in this
case, flood occurrence (positive) and no
flood occurrence (negative). A higher AUROC
value indicates better model performance,
where 1.0 represents perfect discrimination,
0.5 indicates random prediction, and values
between 0.7 to 0.9 signify reasonable to
excellent accuracy. The primary advantage
of using AUROC is that it evaluates the model

across all possible thresholds, providing a
robust measure unaffected by imbalanced
class distributions. The procedure for
calculating AUROC involves the following
steps:

1. Compute the True Positive Rate (TPR) and
False Positive Rate (FPR) at various decision
thresholds.

TP

PR= TP+FN

FP

FPR=——
FP+TN

Where, True Negatives is TN, False Positives
is FP, False Negatives is FN, True Positives is
TP.

2. Plot TPR (y-axis) against FPR (x-axis) for
all possible thresholds ranging from 0 to 1.

3. The AUROC value is computed using
numerical integration technique.

(FPR; - FPR;_,) X (TPR; + TPRy,,)
2

AUC=Y}1L,

4. Results

Morphometric Parameters

The study area is delineated into 28 distinct
watersheds of varying sizes (Fig. 2). For
each of these watersheds, 16 morphometric
parameters encompassing linear, areal, and
relief aspects were analyzed to assess and
prioritize their flood susceptibility (Table 1).
The comprehensive results of this analysis
are presented in Table 2.

Linear Morphometric Parameters

The linear morphometric parameters,
including stream number, bifurcation ratio,
and stream order, were thoroughly analyzed
and are presented in Table 2. Notably, some
watersheds exhibit a maximum stream order
of 7, highlighting their complex drainage
network and potential implications for
hydrological behavior (Fig. 3).
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Stream Number

The stream number is calculated based
on the number of stream segments of each
order, forming an inverse geometric sequence
with an order number (R. E. Horton, 1932).
Stream number is directly correlated with
discharge and is used to determine the
peak discharge of streams. Watersheds like
Sarju (3263) and Bhagirathi (2782) exhibit
a relatively high number of streams across
different orders, suggesting a dense and
well-developed drainage network. On the
other hand, watersheds like Chandra Bhaga
(56) and Lohghat (189) display lower stream
numbers, indicative of less intricate drainage
systems.

Bifurcation Ratio (Rb)

Bifurcation ratio is a dimensionless
parameter that expresses the ratio of the
number of streams of any given order to the
number in the next lower order (M. & Aditya,

2014; Syed & Nazia, 2013). Rbm (mean
bifurcation ratio) for various watersheds,
ranging from 2.33 to 6.15. A higher Rbm can
lead to faster runoff and increased flood risk,
especially during heavy rainfall. The Gaula
river has the highest Rbm value of 6.15,
indicating a highly branched stream network.
Conversely, lower Rbm values indicate a less
interconnected stream network, potentially
resulting in slower runoff and reduced flood
risk.

Areal Morphometric Parameters

Watershed area (A) is the total area
enclosed in the watershed boundary. It is
directly used to find the other areal aspects
such as drainage density (Dd) and stream
frequency (Fs). Other aspects such as
form factor (Ff), circulatory ratio (Rc) and
elongation ratio (Re) are used to describe
the impact of shape of basin on flood
susceptibility. All these listed in table 2.
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Drainage Density

It is a measure of the average length of
streams per unit drainage area, and describes
the spacing of drainage channels (Praveen
et al,, 2017). High Dd values indicate a well-
developed drainage network, where water is
rapidly channeled through streams andrivers,
resulting in quick and concentrated surface
runoff during rainfall events. The Ram Ganga
watershed exhibits a high drainage density
(2.15), along with Song (1.29), Gaula (1.07),
and Dhauli Ganga (1.09), making them more
susceptible to flooding due to their efficient
drainage systems. In contrast, watersheds
with lower Dd values, such as Sarju (0.98),
Mandal (0.99), Pindar (0.99), and Bandagarh
(0.92), tend to have less efficient drainage
networks for floods.

Stream Frequency

It defines the total number of stream
segments of all orders per unit area (R. E.
Horton, 1932). Watersheds with high stream
frequency, such as Song (2.03), Gaula (1.29),
Dhauli Ganga (0.86), and Sarju (0.81), are
more prone to rapid surface runoff due to
their extensive stream networks, which
can quickly convey water to the main
channels and elevate flood risks. Conversely,
watersheds with lower Fs values, such as
Mandal (0.76), Bhagirathi Upper (0.92),
Asan (0.75), and Devta Gadhera (0.69), have
sparser drainage networks, which can lead to
slower runoff and reduced flood potential.

Form Factor

Horton (1945) has described the form
factor as determined by the ratio of the basin
area to the square of the basin length. Its
values range between 0 and 1. A higher Ff
value indicates a more circular watershed,
which tends to have a shorter runoff distance
and higher peak flow during rainfall events,
thereby increasing the potential for flash
flooding. Watersheds with high Form Factor
values, such as Asan (0.45), Alaknanda (0.44),
Mandakini (0.51), and Sarju (0.53), are at
high flood risk. In contrast, watersheds with

lower Ff values, such as Gaula (0.19), Gauri
Ganga (0.23), Nandakini (0.28), and Chandra
Bhaga (0.28), have lower peak flows, which
can reduce the immediate risk of flooding.

Circulatory Ratio (Rc)

The circulatory ratio (Rc) is defined as the
ratio between the area of the basin and the
area of a circle with the same perimeter as the
basin (A. N. Strahler, 1964). Devta Gadhera
(0.48), Mandakini (0.46), Alaknanda (0.44),
and Asan (0.45) are among the watersheds
with higher circulatory ratios. These higher
values suggest that these watersheds are
more circular and likely to experience
quicker runoff, leading to higher peak flows
and an increased risk of flash floods during
rainfall events.

Elongation Ratio (Re)

The elongation ratio (Re) is defined as
the ratio of the diameter of a circle with the
same area as the basin (A) to the length of
the basin (Lb) (S. Schumm, 1956b). A higher
elongation ratio (Re close to 1.0) implies
that the watershed is more circular, which is
associated with quicker drainage and a higher
potential for flash floods. Jodh Ganga (0.91),
Ram Ganga (0.86), Ladhiya (0.57), and Bhilla
Ganga (0.60) are among the watersheds with
higher Re values. These watersheds, being
more circular, are more likely to experience
rapid runoff and higher peak flows,
increasing the risk of flash floods during
intense rainfall. Conversely, watersheds
with lower elongation ratios, such as Gaula
(0.49), Hiyuni (0.56), Bandagarh (0.56), and
Bhagirathi (0.57), exhibit a more elongated
shape. These watersheds may have a lower
risk of sudden floods due to the elongated
shape.

Drainage Texture (Dt)

“Drainage Texture refers to the total
number of stream segments of all orders along
the basin’s perimeter” (R. E. Horton, 1932).
Drainage texture is calculated by multiplying
Dd and Fs (Sreedevi et al., 2009). Smith, 1950
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distinguished five types of drainage texture
(Dt): very coarse (less than 2), coarse (2 to
4), moderate (4 to 6), fine (6 to 8), and very
fine (> 8). The Song watershed has a high
drainage texture of 12.22, indicating a very
fine drainage texture, which suggests a high
potential for quick runoff and flash floods.
Watersheds such as Asan (3.77), Kosi (4.69),
Lohghat (2.16), and Nandakini (3.30) show
coarse to moderate drainage textures which
indicate the low flood risk in these areas.

Relief Morphometric Parameters

Basin Relief

Basin relief (Bh) is the elevation difference
between a watershed’s highest and lowest
points (S. Schumm, 1956). The basin relief
(Bh) parameter strongly influences streams
gradient, affecting flooding patterns and the
amount of sediment transported (Farhan,
2017). The Alaknanda watershed has a high
basin relief of 6.25 km, indicating significant
elevation changes and steep terrain
suggesting this regions are prone to rapid
water flow and intense erosion processes.
Conversely, watersheds such as Asan (1.97
km), Lohghat (1.83 km), Parry (1.59 km),
and Chandra Bhaga (1.78 km) have lower
basin relief, indicating gentler slopes and less
pronounced elevation changes, leading to
slower water flow and reduced erosion.

Relief Ratio (Rr)

The relief ratio (Rr) is defined as a
dimensionless height-length ratio between
the relief of the basin (Bh) and the length
of the basin (Lb) (S. Schumm, 1956). High
values are associated with hilly regions,
and rapid discharges (Sreedevi et al., 2009).
Watersheds with high relief ratios, such as
Alaknanda (0.11), Mandakini (0.11), Chandra
Bhaga (0.11), and Gauri Ganga (0.07), are
characterized by steep slopes, leading to
rapid water flow. These watersheds are more
likely to experience flash floods.

Ruggedness Number (Rn)

The ruggedness number (Rn) is a
dimensionless parameter that is calculated
by multiplying the basin relief (Bh) by the
drainage density (A. N. Strahler, 1964). Rn
values are typically higher in mountainous
regions having a tropical climate and
abundant rainfall with active geomorphic
processes (Farhan, 2017). The Dhauli Ganga
watershed has a high ruggedness number of
6.90, signifying a highly rugged and dissected
terrain with significant flood potential.
Conversely, watersheds like Chandra Bhaga
(1.94), Parry (1.56), Devta Gadhera (1.78),
and Lohghat (1.93) have lower ruggedness
numbers, suggesting smoother terrain with
less pronounced surface irregularities and
lower erosion potential.

Table 3. Pairwise comparison matrix

Dd Fs Nu Rc Ff Re Rb Rn Dt
Dd 1 2 3 4 4 5 6 7 9
Fs 050 1 2 3 4 4 5 6 8
Nu 033 05 1 3 4 5 6 7 8
Rc 025 033 033 1 3 3 5 6 9
Ff 0.25 0.25 0.25 0.33 1 2 5 7 9
Re 020 025 0.2 033 0.5 1 5 7 8
Rb 0.17 0.2 017 0.2 0.2 0.2 1 2 4
Rn 0.14 0.17 0.14 0.17 0.14 0.14 05 1 3
Dt 0.11 0.13 0.13 0.11 0.11 013 025 033 1
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Table 4. Normalized pair wise comparison matrix

Dd Fs Nu Rc Ff Re Rb Rn Dt  Weightage

Dd 034 041 042 033 024 024 018 0.16 0.15 0.27
Fs 0.17 0.21 0.28 0.25 0.24 0.20 0.15 0.14 0.14 0.19
Nu 011 0.10 0.14 025 024 0.24 018 0.16 0.14 0.17
Rc 0.08 0.07 0.05 0.08 018 0.15 0.15 0.14 0.15 0.12
Ff 0.08 0.05 0.03 0.03 0.06 010 0.15 0.16 0.15 0.09
Re 0.07 0.05 0.03 0.03 0.03 0.05 015 0.16 0.14 0.08
Rb 0.06 0.04 0.02 0.02 0.01 0.01 0.03 0.05 0.07 0.03
Rn 0.05 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.05 0.02
Dt 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01

Table 5. Ranking of sub-watersheds based on TOPSIS

Watersheds Di, , Di, Cci Ranks Priority
Song 0.05 0.08 1.646 1 Very High
Ram_Ganga 0.06 0.07 1.168 2 Very High
Sarju 0.07 0.07 1.069 3 Very High
Dhauli Ganga 0.07 0.06 0.982 4 High
Bhagirathi 0.08 0.06 0.855 5 High
Gauri Ganga 0.08 0.04 0.621 6 High
Yamuna 0.08 0.04 0.551 7 Medium
Alaknanda Upper 0.08 0.04 0.542 8 Medium
Nayar 0.08 0.04 0.535 9 Medium
Jodh Ganga 0.08 0.04 0.514 10 Medium
Kosi 0.08 0.04 0.504 11 Medium
Mandakini 0.08 0.04 0.496 12 Low
Pindar 0.08 0.04 0.468 13 Low
Gaula 0.08 0.03 0.454 14 Low
Asan 0.09 0.04 0.441 15 Low
Darma Yakti 0.08 0.03 0.415 16 Low
Bhagirathi Upper 0.08 0.03 0.401 17 Low
Tons 0.09 0.03 0.398 18 Very Low
Bhilla Ganga 0.09 0.03 0.352 19 Very Low
Devta Gadhera 0.10 0.02 0.250 20 Very Low
Ladhiya 0.09 0.02 0.231 21 Very Low
Nandakini 0.10 0.02 0.229 22 Very Low
Mandal 0.10 0.02 0.216 23 Very Low
Lohghat 0.10 0.02 0.211 24 Very Low
Hiyuni 0.10 0.02 0.203 25 Very Low
Chandra Bhaga 0.10 0.02 0.176 26 Very Low
Parry 0.10 0.02 0.169 27 Very Low
Bandagarh 0.11 0.02 0.164 28 Very Low
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4.2. Prioritization of the drainage basin

Multicriteria decision-making (MCDM)
involves using various methods to evaluate
and rank alternatives based on multiple
criteria. The first step involves developing
a hierarchy of criteria and alternatives. The
Analytic Hierarchy Process (AHP) is then
used to determine the relative importance
of each criterion. Using the AHP (Table 3 &
4), the weights of each criterion, such as
‘Dd, ‘Fs, ‘Nu, ‘Rc, ‘Ff) ‘Re; ‘Rb, ‘Rn, and ‘Dt

were derived. These weights represent the
importance of each criterion in the decision-
making process (Table 4). Following the
AHP process, the TOPSIS method is applied.
A decision matrix is created with the
performance values of each alternative for
each criterion. Cci represents the closeness
coefficient of each watershed, which is
calculated as the ratio of the distance from
the negative ideal solution to the sum of the
distances from the negative and positive
ideal solutions. A higher value of Cci indicates

Table 6: List of the flood occurrence in the Uttarakhand

Year Flood Name/Location River(s) Affected Impact Reference
1970 Alaknanda Flood Alaknanda Wldespr.ead (Ranaetal, 2013)
destruction.
. . . Major damage in
1991 Uttarkashi Flood Bhagirathi Uttarkashi. (Parkash, 2012)
1998 Malpa Landslide and Kali 250+ deaths, village (Paul et al,, 2000)
Flood destroyed.
2001 Phata Flood Mandakini 27 people, 64 animals, (Naithani et al,, 2002)
22 houses
. Minor flooding in . .
2009 Rudraprayag Flood Mandakini (Gairola & Bisht, 2012)
Rudraprayag.
2012 Ukhimath Mandakini 66 people (Dimri et al,, 2017)
35 people, 436
2012 Pandrasu ridge Ganga livestock lost, 591 (Gupta et al,, 2013)
houses damged
. . . Major damage in
2012 Uttarkashi Flood Bhagirathi Uttarkashi. (Gupta et al., 2013)
2012 Uttarakhand Flood Alaknanda Localized destruction. (Parkash, 2012)
Mandakini,
2013 Kedarnath Flood Bhagirathi, 5'700+ deaths_, (Ahluwalia et al,, 2016)
massive destruction.
Alaknanda
2014 Purala Flood Tons 16 peo;()jl:alseported (Mishra et al., 2022)
2016 Kemra Flood Bhagirathi 120 ho.uses, 100 (Gourav et al., 2020)
animals
2016 Pithoragarh Flood Sarju Localized flooding, (Parihar & Pandey, 2022)
destruction.
2017 Dharchula Flood Sarju 16 people (Mani et al,, n.d.)
2018 Tharali Flood Pindar 55 houses, 10 (Joshi et al, 2018)
vehicles, 2 ropeways
2019 Makudi Flood Bhagirathi 17 people died (Chauhan et al,, 2022)
2021 Chamoli Disaster Rishiganga, 200+ deaths, severe (Kansal & Singh, 2022)
Dhauliganga damage.
2022 Seasonal Flooding Song Flash floods across (Khanduri, 2024)

the state.
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Fig. 4. Receiver Operating Characteristic (ROC) Curve and calculation of Area Under Curve (AUC)

that the watershed is closer to the negative
ideal solution and therefore performs worse
overall. The watersheds have been classified
into five classes based on their Cci values
(Table 4 & Fig. 5).

5. Validation of results through
AUROC

Tovalidatetheflood occurrencepredictions
in various watersheds, Receiver Operating
Characteristic (ROC) curve analysis is applied,
and the Area Under the Curve (AUC) value is
calculated. ROC analysis provides a graphical
representation of the trade-off between
the True Positive Rate (TPR) and the False
Positive Rate (FPR) at various thresholds
(Fig. 4). The data comprised 28 watersheds
(Table 5 & 6), where flood occurrence
(positive state) and no flood occurrence
(negative state) were classified based on
predictive values. The AUC for the TOPSIS
model is calculated as 0.789 (Standard Error
is 0.09837), with a 95% Confidence Interval.
An AUC value of 0.789 indicates that the
model has good discriminatory power, as it
effectively differentiates between watersheds
experiencing flood events and those without
flood occurrence.

6. Discussion

The analysis revealed critical insights into
the spatial variability of flood susceptibility
across different watersheds in study area.
Using morphometric parameters such as
drainage density, bifurcation ratio, slope,
elongation ratio, and relief ratios, the
watersheds were prioritized based on their
susceptibility to flooding. The Receiver
Operating Characteristic (ROC) analysis
further validated the results, yielding an Area
Under the Curve (AUC) value of 0.789 with
a standard error of 0.098, demonstrating
acceptable performance and predictive
accuracy. Watersheds such as the Alaknanda
Upper, Bhagirathi, Dhauli Ganga, Mandakini,
Sarju, and Song emerged as highly susceptible
based on both morphometric analysis and
flood occurrence data. The results underscore
the crucial role of morphometric analysis
in identifying flood-prone watersheds,
particularly in regions like Uttarakhand,
which are highly susceptible to natural
disasters due to steep slopes, high relief, and
intense precipitation. Watersheds exhibiting
higher drainage density and relief values
reflect faster runoff and higher potential
for flooding. For example, watersheds such
as Dhauli Ganga and Sarju show significant
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flood susceptibility due to their steep slopes
and poor infiltration capacity. This aligns
with findings from earlier studies done by
Joshi et al., 2018 and Karmokar & De, 2020
where areas with high drainage density were
observed to be highly correlated with flood
events. The AUC value of 0.789, achieved
through ROC curve analysis, indicates a
good predictive accuracy for the model,
validating the reliability of morphometric
parameters in flood susceptibility analysis.
The standard error of 0.098 further
corroborates the precision of the assessment,
as the deviation from the mean prediction
remains minimal. Although not perfect, the
acceptable predictive ability suggests that
the morphometric parameters used are
meaningful indicators for flood potential
analysis.

The findings of this study hold significant
practical relevance for regional flood
management and policy formulation. By
identifying flood-prone watersheds using
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validated morphometric parameters,
stakeholderssuchaspolicymakers,watershed
managers, and disaster risk authorities can
allocate resources more effectively for flood
mitigation and preparedness. For instance,
highly susceptible watersheds like Sarju
and Dhauli Ganga should be prioritized
for the implementation of flood-resistant
infrastructure, afforestation programs, and
sustainable land use practices. While the
results provide a comprehensive assessment
of flood susceptibility, a few limitations are
persist. First, the reliance on morphometric
parameters alone may not fully capture
the dynamic nature of flood occurrence.
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the validation process primarily relied on
historical flood occurrence data, which
may not account for unforeseen climatic
variations or extreme events occurring in
the future. So, the future studies should
integrate a broader range of parameters,
such as climatic variables (e.g., precipitation
patterns, temperature), anthropogenic
influences, and remote sensing-derived land
use/land cover changes, to improve the
accuracy and reliability of flood susceptibility
models. There is a need for long-term flood
monitoring and community-based flood
management programs in highly susceptible
watersheds. The collaboration between
researchers, policymakers, and local
communities can foster resilience against
flood hazards by implementing effective
water resource management, land-use
policies, and infrastructural interventions.

7. Conclusion

The results of the study demonstrate the
critical role of morphometric parameters in
flood susceptibility assessment, particularly
in regions with challenging geomorphic and
hydrological characteristics. The application
of ROC curve analysis validated the
reliability of the results, with an AUC value
of 0.789 indicating acceptable predictive
performance. Watersheds like Sarju and
Bhagirathi, with high stream numbers and
bifurcation ratios, are identified as having
elevated flood risks due to their propensity
for reduced infiltration and increased runoff.
Conversely, watersheds such as Chandra
Bhaga and Bandagarh, which exhibit
lower stream frequencies and bifurcation
ratios, are associated with reduced flood
risks. Overall, this study provides valuable
insights for decision-makers, offering a
scientific basis for prioritizing watersheds
and implementing effective flood mitigation
strategies in the region. The findings
emphasize the importance of integrating
morphometric analysis with advanced
decision-making techniques to address the
growing challenges of flood management in
the Uttarakhand Himalayas.
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