Research paper

Formulation and investigation of *Lactobacillus* rhamnosus cek-R1 filled alginate microspheres with different excipients

Boglárka Papp ^{1,2}, Liza Józsa^{1,2}, Dávid Sinka^{1,2}, Eszter Fidrus³, Gábor Kardos³, Fruzsina Nacsa⁴, Ildikó Bácskay^{1,2} and Pálma Fehér ^{1,2,*}

- ¹ Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- ² Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
- ⁴ MEDITOPPharmaceutical Ltd., Pilisborosjenő Ady Endre Street 1, 2097 Pilisborosjenő, Hungary
- * Correspondence: feher.palma@pharm.unideb.hu;

Abstract

Microspheres are spherical particles containing the active substance, in our case, the bacterial probiotic strain *Lactobacillus rhamnosus* (*L. rhamnosus*), in an individually coated form. *L. rhamnosus* is a natural constituent of the human intestinal flora and is known to improve immune function, enhance healing of the intestinal mucosa, reduce inflammation, bloating, and diarrhea.

The aim of our experimental work was to formulate sodium alginate microspheres containing L. rhamnosus bacterial strain as active ingredient and prebiotics (galactooligosaccharide, pectin, inulin). The microspheres were formulated using Büchi Encapsulator equipment, and the entrapment efficiency was subsequently measured. The lyophilized product was filled into hydroxypropylmethylcellulose (HPMC) capsules and was subjected to a dissolution assay using Erweka equipment. The number of viable *L. rhamnosus* was determined from samples of the dissolution fluid. The microspheres are lyophilised to improve shelf-life and facilitate filling into traditional capsules. The number of viable bacteria in the lyophilizate was determined by inoculation on medium and a standard microdilution test. Microspheres containing different compositions of pro- and prebiotics were formulated, and their antioxidant capacity was detected by 2,2-diphenyl-l-1-picrylhydrazyl (DPPH). We tested the antiinflammatory effect of the microspheres using a human IL-4 ELISA Kit on the colon adenocarcinoma (CaCo-2) cell line. Our results showed that the cek-R1 strain had a strong self-adhesion, Polyvinylpyrrolidone (PVP) enhanced encapsulation efficiency and pH-responsive release, inulin co-formulation increased antioxidant activity, and L. rhamnosus dose-dependently suppressed IL-4 production in Caco-2 cells, indicating immunomodulatory potential.

Probiotics are live microorganisms that when administered in adequate quantities, confer health benefits to the host ¹. According to research, between 10¹⁰ and 10¹² live microorganisms live in the human colon². This group includes bacterial species from genera such as Lactobacillus, Bifidobacterium, Bacillus, and Escherichia, as well as yeast species like Saccharomyces cerevisiae³. They contribute to gut microbiome homeostasis, enhancing digestion and immune responses. Lactobacillus exhibits superior acid tolerance (pH 4.5–6.4) compared to *Bifidobacterium*, favoring its survival and viability during gastrointestinal transit⁴. Prebiotics are non-digestible dietary fibers that selectively stimulate the growth and activity of beneficial gut microbiota, promoting host health⁵. Prebiotics include various natural and synthetic compounds such as oligosaccharides (e.g., FOS, GOS) and polysaccharides (e.g., inulin, resistant starch), which support beneficial gut bacteria. GOS are composed of galactose units linked to glucose by β -(1-4) or β -(1-6) bonds, while inulin consists of fructose units mainly linked by β -(2-1) bonds, often terminating in glucose^{6,7}. Krasaekoopt et al. demonstrated that the addition of GOS and inulin prebiotics during microencapsulation not only provided better protection of various *Lactobacillus* strains but also enhanced the growth of these microorganisms in the simulated digestive system⁸. Oral administration of Lactobacillus probiotics is limited by poor mucosal adherence, acid sensitivity, and microbial competition. Advanced delivery methods including biofilm-based systems and microsphere encapsulation, enhance bacterial adhesion, viability, and therapeutic outcomes 9-11. Alginate-based microspheres are an effective carrier system for Lactobacillus species, as they enhance probiotic survivability by protecting cells from harsh gastrointestinal conditions, improving encapsulation efficiency, and enabling controlled release in the intestines 12,13. Alginate-based formulations protect bacteria by forming biocompatible, ionically crosslinked hydrogels that maintain viability and shield against environmental stress more effectively than harsher encapsulation methods¹⁴. Polyvinylpyrrolidone (PVP) stabilizes and solubilizes bioactive in microencapsulation, promoting uniform dispersion and sustained release. Its film-forming properties improve microcapsule stability and protection against degradation ^{15,16}.

Lactobacillus species mitigate oxidative stress by enhancing antioxidant enzyme activity (e.g., SOD, catalase) and modulating Nrf2 signaling, while reducing inflammation through downregulation of pro-inflammatory cytokines like TNF-α and IL-

6 via NF-κB and MAPK pathways^{17,18}. *Lactobacillus* strains downregulate NF-κB pathway genes (*TIRAP, IRAK4, NEMO, RIP*) and JAK/STAT components, suppressing cytokine production in inflamed intestinal cells^{19,20}.

2. Materials and methods

2.1 Materials

Low-viscosity-grade sodium alginate was obtained from BÜCHI Labortechnik AG (Flawil, Switzerland). The human adenocarcinoma cancer cell line (Caco-2) originated from the European Collection of Authenticated Cell Cultures (ECACC, Public Health England, Salisbury, UK). Dulbecco's Modified Eagle's Medium (DMEM), phosphate buffered saline (PBS), heat-inactivated fetal bovine serum (FBS), L-glutamine, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 96% ethanol and L-ascorbic acid (CAS No.: 50-81-7), human IL-4 ELISA Assay Kits were purchased from Sigma-Aldrich (Budapest, Hungary). Nonessential amino acid solution and penicillin–streptomycin mix, TrypLE™ Express Enzyme (no phenol red), 96-well plates, and cell culture flasks were obtained from Thermo-Fisher (Darmstadt, Germany, CAS number: 156499). All other products were purchased from Sigma-Aldrich (St. Louis, MI, USA).

2.2 Selection of Lactobacillus species

2.2.1 Microbial adhesion to hydrocarbons (MATH) test

The MATH assay involves mixing the bacterial suspension with hexane, followed by vigorous agitation to promote interaction between the two phases and evaluate cell surface hydrophobicity. The hydrophobic bacterial cells adhere to the hexane phase, and their hydrophobicity is quantified by measuring the change in optical density (OD_{600}) of the aqueous phase before and after mixing. The hydrophobic property was calculated using the following equation, where H_0 represents the result measured at point 0 and H_x represents the results of the aqueous phase tested after a specific time²¹:

$$H = \frac{H_0 - H_x}{H_0} \times 100 \tag{1}$$

2.2.2. Auto aggregation

Auto-aggregation measurement assesses the ability of probiotic cells to self-associate and form clumps, which is important for their adhesion to host tissues and pathogen exclusion. The method involves suspending the bacteria in a growth medium, followed by incubation to allow for aggregation over a specific period. After incubation, the

optical density (OD₆₀₀) of the supernatant is measured using a spectrophotometer at specific times (3h, 6h, and 24 h). The auto-aggregation percentage is calculated by comparing the (OD₆₀₀) of the supernatant (A_{3h,6h,24h}) to the initial (OD₆₀₀₎ of the bacterial suspension (A₀). This method provides valuable information about the surface properties of probiotics and their functional capabilities in adhesion and colonization²².

$$A = \left[1 - \frac{A_{(3h,6h,24h)}}{A_0} \times 100\right] \tag{2}$$

2.3 Formulation of Lactobacillus-loaded microspheres

In this study, bacterial cultures were lyophilized and encapsulated in microspheres using various excipients. Lyophilization was performed at −110 °C for 24h with a Scanvac CoolSafe Touch 110-4 Freeze Dryer. Encapsulation was performed using a Büchi Encapsulator B-395 Pro to form calcium cross-linked sodium alginate beads, protecting *Lactobacillus* from environmental stress. A 1.5% sodium alginate solution (prepared overnight under light-free conditions) was mixed with a bacterial suspension (10¹⁵ CFU/mL), and solidified in 100 mM CaCl₂. Production parameters are listed in (Table 1). The formulations included GOS, pectin, and inulin at various concentrations (Table 2). Microspheres were washed, filtered (0.20 μm), and lyophilized again under the same conditions ²³.

Diameter of the Vibration Frequency [Hz]		Electrostatic Voltage [V]	Flow Rate (mL/min)
150	1600	1000-1500	5,06

Table 1.: The applied parameters of the encapsulator.

	SA	CaCl₂	IN	GOS	PVP	cek-R1
I	-	-	-	-	-	+
la	-	-	+	-	-	+
lb	-	-	-	+	-	+
II	+	+	-	-	-	+
lla	+	+	+	-	-	+
llb	+	+	-	+	-	+
llc	+	+	+	+	+	+

Table 2.: Formulation of microspheres containing the bacterial species cek-R1 with different excipients

To determine the encapsulation efficiency (EE%), 1 mL sampling of the hardening solution is collected and the amount of active ingredient inside the bead is calculated according to the amount of active ingredient in the solution. For the determination of the active ingredient concentration UV-VIS spectrophotometer was used²⁴. The following equation was used to calculate the exact amount of probiotic strain entrapped, where m0 is the amount of initial probiotic strain (mg) and m1 is the amount of probiotic strain measured in the hardening solution (mg):

$$(EE\%) = \frac{m_0 - m_1}{m_0} \times 100 \tag{3}$$

2.5 In vitro dissolution test

In vitro dissolution testing was conducted using simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 6.8) according to the European Pharmacopoeia IX. Formulations encapsulated in size 0 HPMC capsules were evaluated using a USP dissolution apparatus (Erweka DT800) at $37 \pm 0.5^{\circ}$ C with agitation at 100 rpm. Capsules were exposed to SGF for 1 hour, followed by transfer to SIF for 23 hours. Samples were withdrawn at predetermined intervals (0, 2, 4, 6, 8, and 24 h) to assess bacterial viability²⁵.

2.6 DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay

The antioxidant activity of the formulations was evaluated using the DPPH assay. Microspheres with various L. rhamnosus strains were dissolved in PBS and centrifuged at 4000 rpm. From the supernatant, 50 μL was added to a 96-well plate, followed by 100 μL of 0.06 mM DPPH in 96% ethanol. Samples were incubated in the dark at room temperature. The color change from purple to yellow indicated antioxidant activity, and absorbance was measured at 517 nm using a Thermo Scientific Multiskan GO spectrophotometer²⁶. Antioxidant capacity (% inhibition) was calculated as:

$$AA\% = 100 - \frac{(Abs_{sample} - Abs_{blank}) \times 100}{Abs_{control}}$$
(4)

Where Abs_{sample} is the absorbance of the sample and the DPPH solution mixture, Abs_{blank} is the absorbance of the 96% alcohol, and Abs_{control} is the absorbance of the

DPPH solution mixture. The DPPH solution itself was used as the negative control, and an absolute alcohol solution of ascorbic acid at a concentration of 0.25 mg/mL was used as the positive control.

2.7 Anti-inflammatory effect of Lactobacillus rhamosus cek-R1

The anti-inflammatory effect of L. rhamnosus isolates in different concentrations was tested on the CaCo-2 cell line. Cells were seeded in 96-well plates and treated with TNF- α inflammatory cytokine for 24 h after reaching full confluence. After in vitro inflammation was induced, cells were incubated with the sample solutions for 24 hours and then tested for anti-inflammatory activity using IL-4 ELISA assays, as recommended by the manufacturer.

2.8 Statistical analysis

The data were analyzed using GraphPad Prism (version 6, GraphPad Software, San Diego, CA, USA). For comparisons between two groups, an unpaired *t*-test was performed, while for comparisons involving three or more groups, analysis of variance (ANOVA) was used, followed by Tukey or Dunnett post-testing. Differences were considered significant at p < 0.05. Statistically significant differences are indicated as $P \le 0.05$ (*), $P \le 0.01$ (***), $P \le 0.001$ (****).

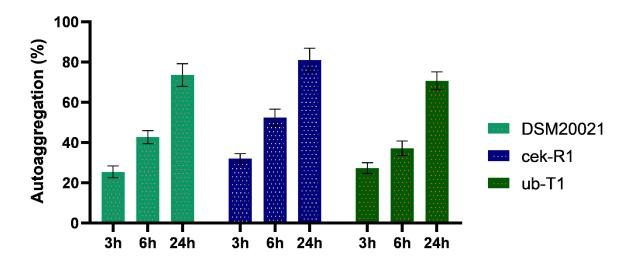
3. Results

3.1. Selection of Lactobacillus species

3.1.1. MATH

The assessment of bacterial cell surface hydrophobicity facilitates the selection of specific strains. It offers critical insights into their adhesion to epithelial surfaces, a key determinant of their colonization capacity and pathogenic potential. In this study, three *L. rhamnosus* species, DSM 20021, cek-R1, and UB-T1 were tested. The results of the test are shown in **(Table 3)**, where the species cek-R1 had the highest value at the base of the hydrophobicity.

(%)


De Remediis

ub-T1 34,68 ± 0,53

Table 3.: Hydrophobicity properties of different *L. rhamnosus* bacterial species. Results are presented as mean ± SD.

3.1.2. Auto aggregation

Auto-aggregation measurement is crucial for evaluating the self-adhesion ability of probiotic strains, which is directly linked to their capacity to form stable biofilms and persist in the host environment. The percentage results of auto-aggregation are shown in **Figure 1.** According to the literature, bacterial strains below 10% are considered as non-aggregating and above 80% as well aggregating. The results showed 81% auto aggregation was measured for cek-R1²⁷.

Figure 1.: Auto-aggregation of different *L. rhamnosus* species expressed as percentage. All results are represented of the mean ± SD.

3.2. Encapsulation efficiency

The active ingredient content of microspheres was calculated using the equation in section 2.3. The results showed that the encapsulation efficiency was between 58% and 69%, as shown in **(Table 4)**. The encapsulation efficiency was highest for formulation IIc, which also contained PVP as an excipient. PVP is able to form a coating on the surface of the microspheres, which can prevent drug leaching through the microbeads, thus improving the encapsulation efficiency.

Formulation	Encapsulation efficiency (EE%)
II	$58,5 \pm 3,64$

	omolar colonimo coarnar or r acarty or r ma
lla	60,1 ± 5,39
llb	59,2 ± 2,21
llc	68,7 ± 3,89

Table 4.: Encapsulation efficiency of different sodium alginate microbeads containing cek-R1 with different excipients. All results are represented of the mean ± SD.

3.3. In vitro dissolution study

In vitro dissolution experiments were performed in SGF and SIF. The drug release in the acid medium remained below 10% for all formulations at the beginning of the study. At higher pH levels, the release exceeded 50% for microcapsulated APIs based on 8 h results. Microspheres containing PVP showed the highest release after 24 hours. **Figure 2.** shows the percentage of *L. rhamnosus* cek-R1 released compared to the initial encapsulated bacterial suspension.

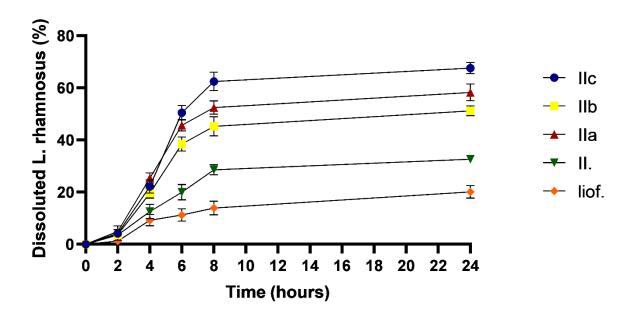


Figure 2.: In vitro dissolution profile of L. rhamnosus-loaded microspheres and lyophilizate in simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 6.8). All results are expressed as the mean \pm SD, (n = 5).

3.4. Radical scavenging activity of L. rhamnosus microspheres

The DPPH radical scavenging activity of the tested samples was evaluated relative to 0.25% ascorbic acid, which served as the positive control and exhibited the highest inhibition of reactive oxygen species (ROS), reaching nearly 100%. Among the test groups, sample **IIa** showed the strongest scavenging activity, inhibiting approximately

60% of ROS relative to the control. Other samples displayed moderate antioxidant capacities, ranging from roughly 40% to 55% inhibition. **Figure 3.**, shows that the samples containing inulin showed the highest radical scavenging property, and microencapsulated probiotic formulations showed higher radical scavenging property compared to lyophilizates

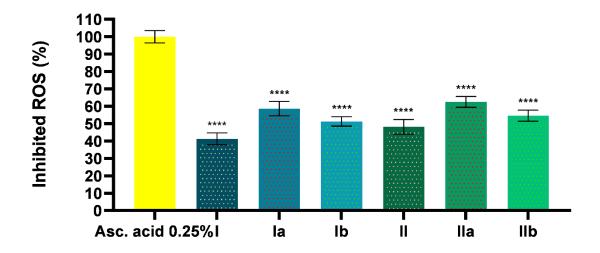
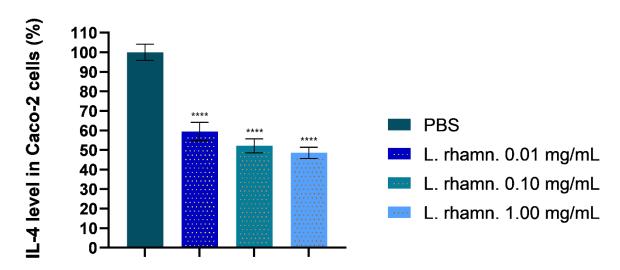



Figure 3.: DPPH-scavenging activity of the formulation. Data are mean \pm SD (n = 6). The different formulations were represented in relation to ascorbic acid.

3.5. In vitro anti-inflammatory effect of L. rhamnosus cek-R1

L. rhamnosus significantly reduced IL-4 concentrations at all test concentrations compared to the PBS-treated group. The reduction in the inflammation level was concentration-dependent, as shown in **Figure 4**, and was found to be directly proportional to the concentration. The results of the anti-inflammatory effect study for IL-4 are shown in **Figure 4**.

Official Scientific Journal of Faculty of Pharmacy UD

Figure 4.: Results of the IL-4 level in the Caco-2 cell line. Results are shown as mean \pm SD (n = 6).

4. Discussion

The development of micro-formulations containing both pro- and prebiotics, and their physical and chemical properties, with the optimal formulation steps were determined experimentally. Dietary fiber is an essential component of the human system as it is responsible for maintaining a healthy intestinal flora, and several studies have confirmed its important role in the maintenance of the gastrointestinal barrier^{28,29}. These substances contribute to the proper functioning of the immune system as nutrients for probiotic bacterial strains that form the normal flora³⁰. In our formulations, we used inulin, a biopolymer of the fructan group, a galacto-oligosaccharide consisting of short chains of sugar molecules with proven prebiotic activity, as a key component³¹. Kaewarsar et al. demonstrated in their work that the studied prebiotics (inulin 1.33 (W/V), FOS 2.00 W/V, and GOS 2.67 W/V%) were able to stimulate the growth of *L. rhamnosus* in all cases³².

The formulation was developed by studying the physical and chemical properties of the components and selecting the correct technological steps for the formulation.

Hydrophobicity is an important factor in predicting the ability of a probiotic's to adhere to intestinal epithelial cells, which is crucial for colonization and exerting beneficial effects³³. The hydrophobicity measurements indicated that the **cek-R1** strain of *L. rhamnosus* exhibits the highest hydrophobic properties (61.36 \pm 0.46%), suggesting a stronger potential for bacterial adhesion to epithelial cells and possibly a higher colonization ability compared to the **DSM 20021** and **UB-T1** strains.

Cell surface hydrophobicity influences the adhesion and colonization of the probiotics. The cek-R1 strain showed 81% auto-aggregation, indicating strong self-adhesion, stable biofilm formation, and high persistence, as values above 80% reflect strong aggregation^{34,35}.

Encapsulation efficiency ranged from 58% to 69%, with the highest observed in formulation IIc, likely due to the presence of PVP. PVP enhances efficiency by increasing the viscosity of the cross-linking solution, reducing pore size, and minimizing active compound leakage. In the dissolution studies, all microspheres exhibited controlled release under acidic conditions, while PVP-containing formulations demonstrated the highest release at elevated pH levels over 24 h, indicating the role of PVP in modulating pH-responsive drug release^{36,37}.

Several studies have shown that microcapsules containing *Lactobacillus* species exhibit greater antioxidant capacity when inulin is included, as it enhances probiotic survival, metabolic activity, and resistance to gastrointestinal stress while enabling sustained release. This prebiotic-probiotic synergy not only improves bacterial viability but also amplifies antioxidant effects through increased enzyme activity and overall bioavailability^{38,39}. Our study has also confirmed that in cases the formulation contained both the bacterial strain and inulin, higher antioxidant properties were measured

Lui et al. demonstrated in their study that *L. rhamnosus* in combination with inulin can reduce dextran sodium sulphate-induced artificial colitis in male Balb/c mice, reduce pathological tissue damage, regulate the expression of inflammatory cytokines, and induce anti-inflammatory effects in mice⁴⁰. *L.* rhamnosus suppresses IL-4 production in Caco-2 cells in a dose-dependent manner, with all tested concentrations showing a similar reduction, and the most pronounced effect at the highest dose, indicating potential anti-inflammatory or immunomodulatory properties.

5. Conclusion

The developed microformulations combining L. rhamnosus and prebiotic components such as inulin showed favorable physicochemical properties, efficient encapsulation, and controlled, pH-responsive release. These formulations also demonstrated enhanced probiotic viability, antioxidant capacity, and potential anti-inflammatory effects, supporting their use in gut health applications.

Acknowledgements

Supported by the EKÖP-24-3-I University Research Scholarship Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund. The work was supported by 2022-1.2.2-TÉT-IPARI-UZ-2022-00006, titled "Common research and development of different prototypes containing natural herb extract for industrial utilization". Project no. TKP2021-EGA-18 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme. Boglárka Papp was supported by the PhD Excellence Scholarship from the Count István Tisza foundation for the University of Debrecen.

Data Availability Statement:

All measurement data are available at the corresponding author upon request.

References

- **1.** Barajas-Álvarez P, González-Ávila M, Espinosa-Andrews H. Microencapsulation of Lactobacillus rhamnosus HN001 by spray drying and its evaluation under gastrointestinal and storage conditions. LWT 2022;153:112485. https://doi.org/10.1016/j.lwt.2021.112485.
- **2.** Collins S, Reid G. Distant Site Effects of Ingested Prebiotics. Nutrients 2016;8:523. https://doi.org/10.3390/nu8090523.
- **3.** Wassenaar TM. Insights from 100 years of research with probiotic E. coli. Eur J Microbiol Immunol (Bp) 2016;6:147–61. https://doi.org/10.1556/1886.2016.00029.
- **4.** Soares MB, Martinez RCR, Pereira EPR, Balthazar CF, Cruz AG, Ranadheera CS, et al. The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Research International 2019;125:108542. https://doi.org/10.1016/j.foodres.2019.108542.
- **5.** Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi S, et al. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019;8:92. https://doi.org/10.3390/foods8030092.
- **6.** Ignatova I, Arsov A, Petrova P, Petrov K. Prebiotic Effects of α and β-Galactooligosaccharides: The Structure-Function Relation. Molecules 2025;30:803. https://doi.org/10.3390/molecules30040803.
- **7.** Zhang Y, Liu R, Song B, Li L, Shi R, Ma X, et al. Recent advances in inulin polysaccharides research: extraction, purification, structure, and bioactivities. Chemical and Biological Technologies in Agriculture 2024;11:136. https://doi.org/10.1186/s40538-024-00667-w.
- 8. Krasaekoopt W, Watcharapoka S. Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT Food Science and Technology 2014;57:761–6. https://doi.org/10.1016/j.lwt.2014.01.037.
- **9.** Etebarian A, Sheshpari T, Kabir K, Sadeghi H, Moradi A, Hafedi A. Oral Lactobacillus species and their probiotic capabilities in patients with periodontitis and periodontally healthy individuals. Clin Exp Dent Res 2023;9:746–56. https://doi.org/10.1002/cre2.740.
- **10.** Alforaidi S, Bresin A, Almosa N, Lehrkinder A, Lingström P. Oral Colonisation after the Administration of Drops Containing Lactobacillus reuteri. Oral Health Prev Dent 2020;18:1017–23. https://doi.org/10.3290/j.ohpd.a45523.
- **11.**Navarro JB, Mashburn-Warren L, Bakaletz LO, Bailey MT, Goodman SD. Enhanced Probiotic Potential of Lactobacillus reuteri When Delivered as a Biofilm on Dextranomer Microspheres That Contain Beneficial Cargo. Front Microbiol 2017;8. https://doi.org/10.3389/fmicb.2017.00489.
- **12.** Oberoi K, Tolun A, Altintas Z, Sharma S. Effect of Alginate-Microencapsulated Hydrogels on the Survival of Lactobacillus rhamnosus under Simulated Gastrointestinal Conditions. Foods 2021;10:1999. https://doi.org/10.3390/foods10091999.
- **13.**Sohail A, Turner MS, Coombes A, Bostrom T, Bhandari B. Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging

Official Scientific Journal of Faculty of Pharmacy UD

aerosols method. Int J Food Microbiol 2011;145:162–8. https://doi.org/10.1016/j.ijfoodmicro.2010.12.007.

- **14.** Pérez-Luna VH, González-Reynoso O. Encapsulation of Biological Agents in Hydrogels for Therapeutic Applications. Gels 2018;4:61. https://doi.org/10.3390/gels4030061.
- **15.**Kurakula M, Rao GSNK. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Deliv Sci Technol 2020;60:102046. https://doi.org/10.1016/j.jddst.2020.102046.
- **16.** Franco P, De Marco I. The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers (Basel) 2020;12:1114. https://doi.org/10.3390/polym12051114.
- **17.** Kong Y, Olejar KJ, On SLW, Chelikani V. The Potential of Lactobacillus spp. for Modulating Oxidative Stress in the Gastrointestinal Tract. Antioxidants 2020;9:610. https://doi.org/10.3390/antiox9070610.
- **18.**Zhao T, Wang H, Liu Z, Liu Y, DeJi, Li B, et al. Recent Perspective of Lactobacillus in Reducing Oxidative Stress to Prevent Disease. Antioxidants 2023;12:769. https://doi.org/10.3390/antiox12030769.
- **19.**Li C, Peng K, Xiao S, Long Y, Yu Q. The role of Lactobacillus in inflammatory bowel disease: from actualities to prospects. Cell Death Discov 2023;9:361. https://doi.org/10.1038/s41420-023-01666-w.
- **20.** Aghamohammad S, Sepehr A, Miri ST, Najafi S, Pourshafie MR, Rohani M. Anti-inflammatory and immunomodulatory effects of Lactobacillus spp. as a preservative and therapeutic agent for IBD control. Immun Inflamm Dis 2022;10. https://doi.org/10.1002/iid3.635.
- **21.**Zoueki CW, Tufenkji N, Ghoshal S. A modified microbial adhesion to hydrocarbons assay to account for the presence of hydrocarbon droplets. J Colloid Interface Sci 2010;344:492–6. https://doi.org/10.1016/j.jcis.2009.12.043.
- **22.** Zuo F, Yu R, Feng X, Chen L, Zeng Z, Khaskheli GB, et al. Characterization and in vitro properties of potential probiotic Bifidobacterium strains isolated from breast-fed infant feces. Ann Microbiol 2016;66:1027–37. https://doi.org/10.1007/s13213-015-1187-x.
- **23.** Papp B, Le Borgne M, Perret F, Marminon C, Józsa L, Pető Á, et al. Formulation and Investigation of CK2 Inhibitor-Loaded Alginate Microbeads with Different Excipients. Pharmaceutics 2023;15:2701. https://doi.org/10.3390/pharmaceutics15122701.
- **24.** Bácskay I, Papp B, Pártos P, Budai I, Pető Á, Fehér P, et al. Formulation and Evaluation of Insulin-Loaded Sodium-Alginate Microparticles for Oral Administration. Pharmaceutics 2023;16:46. https://doi.org/10.3390/pharmaceutics16010046.
- **25.**Kósa D, Pető Á, Fenyvesi F, Váradi J, Vecsernyés M, Budai I, et al. Oral Bioavailability Enhancement of Melanin Concentrating Hormone, Development and In Vitro Pharmaceutical Assessment of Novel Delivery Systems. Pharmaceutics 2021;14:9. https://doi.org/10.3390/pharmaceutics14010009.
- **26.**Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, et al. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022;27:1326. https://doi.org/10.3390/molecules27041326.
- **27.**Balakrishna A. In vitro evaluation of adhesion and aggregation abilities of four potential probiotic strains isolated from guppy (Poecilia reticulata). Brazilian

Official Scientific Journal of Faculty of Pharmacy UD

Archives of Biology and Technology 2013;56:793–800. https://doi.org/10.1590/S1516-89132013000500010.

- **28.**Fu J, Zheng Y, Gao Y, Xu W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms 2022;10:2507. https://doi.org/10.3390/microorganisms10122507.
- **29.** Yoo S, Jung S-C, Kwak K, Kim J-S. The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health. Int J Mol Sci 2024;25:4834. https://doi.org/10.3390/ijms25094834.
- **30.** Maftei N-M, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, et al. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024;12:234. https://doi.org/10.3390/microorganisms12020234.
- **31.**Souza AFC e, Gabardo S, Coelho R de JS. Galactooligosaccharides: Physiological benefits, production strategies, and industrial application. J Biotechnol 2022;359:116–29. https://doi.org/10.1016/j.jbiotec.2022.09.020.
- **32.** Kaewarsar E, Chaiyasut C, Lailerd N, Makhamrueang N, Peerajan S, Sirilun S. Optimization of Mixed Inulin, Fructooligosaccharides, and Galactooligosaccharides as Prebiotics for Stimulation of Probiotics Growth and Function. Foods 2023;12:1591. https://doi.org/10.3390/foods12081591.
- **33.** Wang R, Liu Y, Wen Y, Chen S, Zhang X, Zhang C, et al. Unraveling the secrets of probiotic adhesion: An overview of adhesion-associated cell surface components, adhesion mechanisms, and the effects of food composition. Trends Food Sci Technol 2025;159:104945. https://doi.org/10.1016/j.tifs.2025.104945.
- **34.** Maione A, Imparato M, Buonanno A, Salvatore MM, Carraturo F, de Alteriis E, et al. Evaluation of Potential Probiotic Properties and In Vivo Safety of Lactic Acid Bacteria and Yeast Strains Isolated from Traditional Home-Made Kefir. Foods 2024;13:1013. https://doi.org/10.3390/foods13071013.
- **35.** Suvarna S, Dsouza J, Ragavan ML, Das N. Potential probiotic characterization and effect of encapsulation of probiotic yeast strains on survival in simulated gastrointestinal tract condition. Food Sci Biotechnol 2018;27:745–53. https://doi.org/10.1007/s10068-018-0310-8.
- **36.** Nayak AK, Pal D. Development of pH-sensitive tamarind seed polysaccharide—alginate composite beads for controlled diclofenac sodium delivery using response surface methodology. Int J Biol Macromol 2011;49:784–93. https://doi.org/10.1016/j.ijbiomac.2011.07.013.
- **37.** Işıklan N, İnal M, Yiğitoğlu M. Synthesis and characterization of poly(N -vinyl-2-pyrrolidone) grafted sodium alginate hydrogel beads for the controlled release of indomethacin. J Appl Polym Sci 2008;110:481–93. https://doi.org/10.1002/app.28577.
- **38.** Kleniewska P, Hoffmann A, Pniewska E, Pawliczak R. The Influence of Probiotic Lactobacillus casei in Combination with Prebiotic Inulin on the Antioxidant Capacity of Human Plasma. Oxid Med Cell Longev 2016;2016. https://doi.org/10.1155/2016/1340903.
- **39.**Chean SX, Hoh PY, How YH, Nyam KL, Pui LP. Microencapsulation of Lactiplantibacillus plantarum with inulin and evaluation of survival in simulated gastrointestinal conditions and roselle juice. Brazilian Journal of Food Technology 2021;24. https://doi.org/10.1590/1981-6723.22420.

Official Scientific Journal of Faculty of Pharmacy UD

Liu Z, Liu F, Wang W, Sun C, Gao D, Ma J, et al. Study of the alleviation effects of a combination of Lactobacillus rhamnosus and inulin on mice with colitis. Food Funct 2020;11:3823–37. https://doi.org/10.1039/C9FO02992C.