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This paper analyzes the performance of the Hungarian meat processing industry in the wake of the global 
financial crisis. Between 2011 and 2013 many high-capacity meat processors went bankrupt in Hungary. 
Possible reasons for that could be unfavorable market situation and inefficiency in production. In this 
paper, the latter hypothesis is examined. Two different types of production function estimation techniques 
are used to calculate firm-specific inefficiency estimates. Based on the estimation results, the lower bound 
of average firm-level efficiency is 0.50, while the upper bound is 0.88. Estimated firm-level inefficiencies are 
compared to the characteristics of the given firms. Pre-tax profit, company size and domestic ownership are 
associated with lesser inefficiency. On the other hand, time trend of inefficiencies indicate that the global 
financial crisis negatively affected the production efficiency of the meat processors. This can be a reason 
behind the bankruptcies happened.
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Many high-capacity meat processors went bankrupt in recent years, which is an important 
industry for the Hungarian economy. János Ruck, former general manager of Gyulai 
Húskombinát Plc.1 made a remark that “there is no profitably operating meat processor 
in Hungary at the time being, all the companies from the largest to the smallest are loss-
making” (Rácz 2012:74). This picture is distorted by the fact that more than half of the 
Hungarian meat processors’ and producers’ operating profit was positive in 2011. Compared 
to other sectors, meat processors’ market performance is not dismal either. However, 
average operating profit per firm ratio was close to zero in the last decade that may not be 
sustainable in the long-run.

The above mentioned evidences naturally pose the question that what is the reason 
behind the poor performance of the Hungarian meat processors. The profitability of 
a company mainly depends on the decisions made by managers and corporate leaders. 
However, market structure can influence the performance of a company as well. Previous 
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price transmission analyses conducted in the Hungarian meat supply chain concluded 
that price transmission is symmetric and both input and output markets are competitive 
(Bakucs–Fertő 2005; Bakucs et al. 2006; Berezvai 2014).

Our goal is to analyze whether meat processors made optimal decisions in the years 
have gone by. In our metric, ‘optimal’ decisions are those that maximize profit. Profit 
maximization requires efficient production, i.e. producing the maximum level of output 
using a given level of inputs (or vice versa). Further analysis of the meat processing industry 
will determine whether individual firms made optimal decisions or not.

The result has policy implications given that general and local governments tried to 
retain jobs by giving financial support to most of the companies. This calls for an immediate 
analysis of the meat supply chain to understand whether it was inefficient production or 
other factors which caused the same. The bail-out of inefficient companies will soften their 
budget constraints, and it is very likely that losses will reproduce themselves in this case.

Additionally, there is no detailed production efficiency analysis of the Hungarian meat 
processing industry, therefore this research will fill this gap.

The structure of this paper is as follows. Section 2 focuses on previous studies. Sections 3 
describes the theoretical framework of the analysis, the methodology and the dataset used. 
Section 4 is made up of the results and discussion. Concluding comments are presented in 
Section 5.

Literature Review

Production efficiency analysis has large theoretical and empirical literature. In this section, 
we will review two main areas of this literature. First, the comparison of the performance 
of stochastic and deterministic models mainly conducted using Monte Carlo simulations 
will be shown. Second, some interesting and relevant efficiency analyses will be introduced. 
These prior studies will help to find the most appropriate models and assumptions for our 
analysis.

Comparison of Stochastic and Deterministic Production
Efficiency Approaches

There are several methods estimating production efficiency. The two most widespread ap-
proaches are data envelopment analysis (DEA) and stochastic frontier analysis (SFA). The 
former one is a mathematical programing approach, a non-parametric method to estimate 
the efficiency of a given set of companies (or countries, etc.). The latter one is an econo-
metric approach, a so-called parametric model, which requires the estimation of an explicit 
production or cost function.

Comparing these two types of models, both of them have pros and cons. DEA is a rather 
deterministic approach that does not assume any measurement error, statistical noise 
or other random conditions. On the contrary, SFA can also be used if the data contains 
statistical disturbances. Real world data often contains measurement errors, therefore the 
econometric estimation of a production function can be more favorable.

However, DEA requires no assumptions with regard to the distribution of the inefficiency 
term or the exact form of the production function, therefore this is a more robust approach 
compared to SFA.
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Banker at al. (1993) compare the two methods using Monte Carlo simulations. 
Their conclusion is that DEA performs better if the sample size and the variation of the 
measurement error is small. SFA is the preferred method if sample size is larger (more than 
100) and measurement errors are also larger. In general, if real world conditions and SFA 
assumptions are in line with each other, then stochastic models are more accurate.

Ruggiero (1999) also uses Monte Carlo simulations to compare the performance 
of stochastic and deterministic models. Surprisingly, he concludes that DEA is better 
performing in almost every cases. However, the flexible translog functional form of the 
SFA shows good performance if the sample size is large (more than 100).

A recent study of Krüger (2012) compares the estimation performance of the two “old” 
models (i.e. SFA and DEA) and a newer, non-parametric-stochastic model. Krüger (2012) 
uses Monte Carlo simulations with 1000 replications which is significantly higher than the 
replications used in previous studies. The results show that SFA is outperforming all the 
other methods considered in the analysis. Additionally, SFA methods are less sensitive to 
the changes of the Monte Carlo simulation settings. The only exception is the introduction 
of outliers. Overall, Krüger (2012) states that the new methods are not performing better 
than the traditional SFA or DEA at least in the design of the Monte Carlo simulation applied.

The previous analyses used cross section data, however, production efficiency analyses are 
more often conducted using panel datasets. Gong and Sickles (1992) conduct a Monte Carlo 
comparison of DEA and three types of SFAs. They use panel estimation methods and come 
to the conclusion that the choice of the functional form plays a key role in the estimation 
accuracy of firm-level inefficiencies. Inappropriate functional form can cause distorted 
efficiency measurement. Constant elasticity of substitution–translog (CES-TL) functional 
form proved to be the best performing one in almost every cases, and this model also 
outperforms DEA. Another important issue is the estimation method. Stochastic frontier 
function can be estimated using several panel approaches. The within panel estimator 
that allows correlation between individual fixed effect (i.e. inefficiency) and independent 
variables (i.e. inputs) generates good results even in the absence of these correlations (i.e. in 
the case of no endogeneity). Based on the simulations, the within estimator is preferred and 
it also outperforms DEA in many cases. Overall, SFA panel models are doing a good job in 
estimating the true inefficiency rates.

Ruggiero (2007) evaluates the performance of SFA and DEA panel models and concludes 
that in a panel setting, SFA outperforms the deterministic approach. However, it is important 
to note that no misspecification was considered and even in this setting, SFA models do not 
converge in many cases when the variance of the noise is relatively high.

Production Efficiency Analyses of the Meat Supply Chain

In this subsection, we will review some prior efficiency analyses conducted in the meat sup-
ply chain. Animal breeding farms, processors and retailers will be considered, respectively. 
Focus is on the processing stage.

Iraizoz et al. (2005) analyze the Spanish beef livestock farms between 1989 and 1999. 
Their results show that the ratio of the produced and potential output is 0.84 indicating a 
significant level of inefficiencies (note that 1 means a fully efficient operation). The estimation 
was made using translog production function, and the expected value of inefficiency is 
explained with exogenous variables. This procedure makes it possible to identify the main 
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determinants of inefficiencies, and the effects of several measurements on inefficiency. For 
example, results show that the more debt a farmer has, the less effective his/her production 
is. It is also important and interesting that subsidies have a negative effect on efficiency.

Bezat-Jarzębowska and Rembisz (2013) analyze farm-level efficiency and competitiveness 
in the Polish agro-food sector. They estimate a translog and a Cobb–Douglas production 
function. Result of the likelihood ratio test indicates that the more restrictive Cobb–Douglas 
form could not be rejected. The sum of the estimated parameters does not significantly 
differ from 1 which means that Polish farms use constant returns to scale technology. 
The average efficiency level is 0.76, i.e. output can be increased by 32% without using any 
additional inputs. However, efficiency scores strongly varies across farms indicating that 
there is a group of almost efficient and competitive farms and a (smaller) group that is 
operating very inefficiently.

Brümmer (2001) analyzes private farms in Slovenia using DEA and SFA methods. SFA is 
estimated assuming translog production function and the mean values of inefficiencies are 
explained by other variables. The average efficiency rate is equal to 0.74 and 0.44 using SFA 
and DEA, respectively. Constructing confidence intervals for the inefficiency rates shows 
that these intervals often contain 1, therefore one cannot reject the null hypothesis of fully 
efficient production. Those observations that have low efficiency scores also tend to have 
smaller confidence intervals.

Considering the Hungarian pig farms, Latruffe et al. (2013) investigate the production 
efficiency of 192 pig farms using the DEA approach. They examined whether a stricter 
environmental regulation with regard to nitrate pollution will affect the level of pig 
production or not. The overall efficiency of the farms proved to be low (average is 
between 0.42 and 0.57), which means that there is space for improvement and pollution 
reduction as well. Latruffe et al. (2013) also explain the inefficiency scores with exogenous 
variables in a second stage quantile regression. Interestingly, farm characteristics proved 
to be insignificant in almost every quantile (except number of livestock units and utilized 
agricultural area), but regional variables (e.g. population, number of feed mills per pig farm 
in the region) do have significant effects. These indicate that production efficiency is not 
independent from market environment and the development of the related markets.

The next stage of the supply chain is the processing stage. This is in the focus of the 
current paper, however, there is not much literature analyzing the production efficiency of 
these companies. Bakucs et al. (2010) investigate whether Hungarian slaughterhouses and 
meat processors possess some market power in their input markets. In order to conduct 
this analysis, they estimate a structural model that is based on the profit maximization 
behavior of the firms. Firms’ production function has a translog form. Bakucs et al. (2010) 
find that meat processors have slight market power in their input markets. The parameter 
estimates are in line with a regional Cournot competition of the processors that is believable 
due to transportation barriers and costs. Bakucs et al. (2009) compare the Hungarian and 
the German meat processing sector with regard to market power towards their suppliers. 
Results suggest that both German and Hungarian processors exhibit some sort of market 
power on pig breeders. However, this is tend to increase in Hungary and decrease in 
Germany.

The above mentioned two papers estimate the production function of the meat processors 
as a by-product and do not analyze the efficiency of the companies. This has not been possible 
to do, because Bakucs et al. (2009) and Bakucs et al. (2010) did not use firm-level data.
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The aim of Kallas and Lambarraa (2010) is to determine the factors that drive market 
exit decisions in the Catalonian meat processing sector. In order to do this, they estimate 
firm-level inefficiencies as a potential driver for market exit. During the estimation 
procedure Kallas and Lambarraa (2010) use Cobb–Douglas production function and three 
input variables: labor expenses, costs of intermediate products and capital requirements of 
the production system. The estimated efficiency scores vary across the sample; there are 
firms with less than 0.3 and more than 0.9 as well. As it was expected, firms with smaller 
efficiency rates are more likely to leave the market.

Keramidou et al. (2013) estimate the production efficiency and profitability of 40 Greek 
meat processing companies using a two-stage DEA-based approach. In the first stage, 
Keramidou et al. (2013) calculate technical inefficiency and in the second stage they assess 
the profit generating capacity of the firms. Results suggest that technical efficiency decreased 
between 1994 and 2007, and the profitability of the industry was also low. Interestingly, 
there is only small (and insignificant) correlation between efficiency and profitability. The 
most efficient firms were not able to achieve superior profitability which indicates some 
managerial inability. In average, a given firm in the Greek meat processing industry could 
have improved its performance by 25% to 38% depending on the year. Large producers 
tended to perform the best while medium sized firms performed the worst.

Finally, food retail sector is examined. Sellers-Rubio and Más-Ruiz (2009) focus on the 
Spanish food retail sector. They estimate stochastic frontier functions and simultaneously 
explain the inefficiencies with other variables. They specify a Cobb–Douglas production 
function and inefficiencies are assumed to follow truncated normal distribution. As a 
result, Sellers-Rubio and Más-Ruiz (2009) state that the overall efficiency of the Spanish 
supermarkets are high, however, there is some space for improvement; 13.7% less resources 
(e.g. staff and wages) would have also been enough to reach the same output level (i.e. mean 
efficiency is 0.86).

Park and Davis (2011) conduct a productivity analysis for the US food retail market. 
They assume flexible model forms, translog production function and normal-gamma 
distribution for the inefficiency term. In general, supermarket efficiency proved to be high, 
38% of the stores achieved more than 0.9, and the average efficiency is 0.86, the same as 
in Spain (Sellers-Rubio–Más-Ruiz 2009). Additionally, Park and David (2011) find that 
employee trainings and part-time employment are able to increase store-level technical 
efficiency.

Methodology and Data

Theoretical Framework

Production efficiency analysis has a strong microeconomic background. According to the 
theory of the firm, a firm is producing a set of outputs using a set of inputs. Technology 
describes the transformation method. In this paper we consider a multiple-input, multiple-
output firm, i.e. a company that produces more than one outputs from more than one inputs.

For a multiple-output production process, production technology describes the 
transformation. Let S = {(x, q): x can produce q} be the technology set, which shows that 
using input vector x the given firm can produce an output vector q. S contains all the 
technologically feasible production opportunities.
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Defining production efficiency is more straightforward if we let y = (−x, q) be the net 
outputs of the given technology and Y be the production set containing all the feasible 
technologies (i.e. y). A negative element in y means an input, a positive element in y means 
an output and 0 means that the given product is either not used in the technology or it 
is only an intermediate product with zero net output. Using this notation, production 
efficiency is as follows (Mas-Colell et al. 1995): A production vector Y∈y is efficient if 
there is no Y∈'y  such that y’ ≥ y and y’ ≠ y. It follows that a given technology is efficient 
if there is no other feasible technology that generates more output using the same quantity 
of inputs or generates the same quantity of outputs using less inputs. The expected profit 
maximization behavior of the firm is strongly related to efficiency. If a production vector 

Y∈y  is profit maximizing for some p > 0 price vector, then it is also efficient. The converse 
of this statement is also true, but only if Y (the production set) is convex. In this case, all the 
efficient technologies are also profit maximizing for some nonzero price vector.

However, this definition of efficiency covers only one aspect of efficiency, namely technical 
efficiency. Several other types of efficiencies could be taken into consideration (Coelli et al. 
2005), but these are out of the scope of this paper.

The Basic Idea of Stochastic Frontier Analysis

As it was shown in the Literature Review section, Monte Carlo simulations indicate that sto-
chastic frontier analyses perform well, especially if we have a large panel dataset. SFA often 
outperforms the deterministic models, therefore it is favorable to use stochastic approaches. 
However, real life validity of the assumptions have a crucial role in the analysis.

According to Lampe and Hilgers (2015), SFA is more widespread in economic research 
areas and it is especially popular in the field of agriculture. Based on these considerations, 
stochastic frontier analysis is used to obtain the inefficiency scores for the Hungarian meat 
processors. To overcome the obstacles of the method, we put special attention to find the 
most appropriate assumptions based on prev ious researches and theoretical considerations.

Considering a particular firm operating in a given industry, the production function 
can be generally written as q = f(x) − u, where u is a non-negative random variable that 
shows technical inefficiency. However, this is a strictly orthodox interpretation, because 
every nonzero deviation from the efficient production frontier is categorized as inefficiency. 
The main problem with this interpretation is that it is deterministic, there is no space for 
statistical noise that can arise from data measurement errors, market shocks or unfavorable 
weather conditions, etc.

To deal with this problem, Aigner et al. (1977) and Meeusen and van den Broeck (1977) 
independently suggest the estimation of stochastic frontier production functions that has 
the form (in a panel setting):

(1)

where qit is the output of firm i at time t, β is a vector of unknown parameters, νit is symmetric 
(idiosyncratic) random error term and uit ≥ 0 represents the inefficiency of the given firm in 
the given time period. In this framework, one firm can produce only one output. However, 
this can be interpreted as aggregate value of outputs that allows the analysis of multi-
product companies (such as almost every firm in the world). In this paper, we will follow 
this approach.
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Model Selection and Parameter Estimation 

The estimation of equation (1) is more complicated than the estimation of a normal regression 

because of the compound error term (νit − uit). Several models were developed to deal with 

this issue. 
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Technical efficiency is given by

(2)

where q*it is the potential output of firm i at time t. Technical efficiency can, but does not 
have to vary across time periods in a panel framework. If technical inefficiency is time-
invariant then uit = ui, t∀ .

Model Selection and Parameter Estimation

The estimation of equation (1) is more complicated than the estimation of a normal regres-
sion because of the compound error term (νit − uit). Several models were developed to deal 
with this issue.

In this paper, we use two types of fixed effects models. First, the fixed effects stochastic 
frontier is estimated following the approach of Schmidt and Sickles (1984). This a very 
simple panel approach that requires the estimation of the equation:

(3)

The individual constant term in equation (3) can be divided into two parts, αi = α − ui, 
where α is the constant term of the technology and ui represents firm-level inefficiency and 
therefore ui ≥ 0 has to hold. We can calculate firm-level inefficiency by exploiting this latter 
inequality. If the cross-section sample size is large enough (i.e. N → ∞), then the overall 
constant term can be estimated by 

i
i )ˆmax(ˆ αα = , where iα̂  is the estimated intercept  

 
for the ith firm. This can be conducted if there is at least one fully efficient company in 
the sample. On the other hand, there is no need for any distributional assumption with 
regard to the inefficiency term. Reiff et al. (2002) use this method to analyze the production 
efficiency of the Hungarian economy (industrial sector).

Fixed effects estimator is always consistent in a panel setting, but inefficient if firm-
specific characteristics do not correlate with right-hand side variables. Random effects 
model is consistent and efficient if there is no correlation between the fixed effects and the 
regressors, but it is inconsistent in the case of endogeneity. A usually applied test for fixed 
versus random effects models is the Hausman test. The test compares the random effects 
parameters to the fixed effects parameters directly. The null hypothesis is that the preferred 
model is the random effects model. In this case, the parameter estimation of the two models 
have to be statistically the same (deviations are not significant). If H0 is rejected, then the 
fixed effects model is preferred.

The fixed effects stochastic frontier estimation assumes that inefficiency rates do not 
vary across time periods. This is plausible if T is small in the sample. However, the present 
dataset covers a 13-year-long period. It is very likely that firm-level efficiencies altered 
during this time. To deal with this problem, we also estimated the ‘true’ fixed effects model 
developed by Greene (2005a) and Greene (2005b).
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‘True’ fixed effects model estimates the following equation:

(4)

where αi is an individual constant term that is not treated as inefficiency. Inefficiency is 
captured by uit that is allowed to be different from period to period. Each individual constant 
term is estimated using T number of observations, therefore this method is appropriate 
only if the length of the panel is large enough. In our dataset T = 13 which is a sufficient 
length of panel to use this approach.

In this framework, the following distributional assumptions are needed to compute the 
likelihood function:

(5)

These assumptions state that νit is an independent and identically distributed idiosyncratic 
error term with normal distribution; uit follows exponential distribution and it is also 
independent and identically distributed across observations. The two error terms are also 
statistically independent from each other.

Firm-level inefficiency can be explained by exogenous variables. The most basic idea 
is to run a second stage regression where predicted inefficiency is the dependent variable. 
However, it was pointed out by Wang and Schmidt (2002) that this approach leads to biased 
estimates. The solution can be a one-step estimation where λ is modelled as being scaled 
using some exogenous variables, zit, formally, uit ~ iidE(z ítδ). In the presence of uncontrolled 
heterogeneity, inefficiency estimates may be biased. This approach helps to avoid this bias, 
too.

The estimation strategy was developed by Polachek and Yoon (1996) and used in 
production efficiency analysis by Greene (2005a). Initial parameter problem is crucial, 
therefore a consistent initial estimation is important. The first step is to estimate the 
parameter vector, β, using simple fixed effects estimation. Firm-specific intercepts can be 
calculated by 
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where σν and σu are the standard deviations of the idiosyncratic and the inefficiency terms, 

respectively. Technical efficiency of the given firm at a given time is exp(−uit) as it was 

introduced in equation (2). Industry-level efficiency is simply the mean of the firm-level 

efficiencies as the sample covers the industry fairly well. 

   Finally, there are several differences between the two applied models, but we want to 

highlight one important feature. The fixed effects model treat time-invariant firm-specific 

heterogeneity completely as inefficiency, because there is one common intercept for every 

firm. Deviations from this intercept are labeled as inefficiencies. On the other hand, the ‘true’ 

fixed effects estimator completely separates time-invariant firm-specific heterogeneity and 

inefficiency. Time-invariant heterogeneity is not treated as inefficiency. Clearly, these two 

extremes are possible in this framework. Estimating both of the models and comparing the 

estimated inefficiencies will define a lower and upper bound of inefficiency for every given 

firm (and for the meat processing industry as a whole). 

Functional Form 

SFA is a parametric approach that requires the explicit determination of the production 

function. The most common functional forms are applied, translog and Cobb–Douglas 

production functions. Both of these functions are linear after logarithmic transformation. 

Translog production function is as follows (suppressing the firm and time subscripts): 
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where n = 1, 2, …, N is the number of inputs used for production. This very flexible 

functional form also allows second-order approximation to an arbitrary production function. 

A restricted version of this function is the Cobb–Douglas production function where all the 

βnm parameters are set to be zero. 

   Principle of parsimony indicates that the simplest model should be chosen. The Cobb–

Douglas model is nested in the translog model, therefore we can use likelihood ratio test to 
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where σν and σu are the standard deviations of the idiosyncratic and the inefficiency terms, 
respectively. Technical efficiency of the given firm at a given time is exp(−uit) as it was 
introduced in equation (2). Industry-level efficiency is simply the mean of the firm-level 
efficiencies as the sample covers the industry fairly well.

Finally, there are several differences between the two applied models, but we want to 
highlight one important feature. The fixed effects model treat time-invariant firm-specific 
heterogeneity completely as inefficiency, because there is one common intercept for every 
firm. Deviations from this intercept are labeled as inefficiencies. On the other hand, the 
‘true’ fixed effects estimator completely separates time-invariant firm-specific heterogeneity 
and inefficiency. Time-invariant heterogeneity is not treated as inefficiency. Clearly, these 
two extremes are possible in this framework. Estimating both of the models and comparing 
the estimated inefficiencies will define a lower and upper bound of inefficiency for every 
given firm (and for the meat processing industry as a whole).

Functional Form

SFA is a parametric approach that requires the explicit determination of the production 
function. The most common functional forms are applied, translog and Cobb–Douglas 
production functions. Both of these functions are linear after logarithmic transformation. 
Translog production function is as follows (suppressing the firm and time subscripts):

(7)

where n = 1, 2, …, N is the number of inputs used for production. This very flexible 
functional form also allows second-order approximation to an arbitrary production 
function. A restricted version of this function is the Cobb–Douglas production function 
where all the βnm parameters are set to be zero.

Principle of parsimony indicates that the simplest model should be chosen. The Cobb–
Douglas model is nested in the translog model, therefore we can use likelihood ratio test 
to test the joint significance of the βnm parameters. This method is commonly used in the 
literature (e.g. Reiff et al. 2002; Bezat-Jarzębowska–Rembisz 2013).

Data

Data used for estimation purposes contains balance sheets and profit and loss statements 
for the Hungarian food industry from 2000 to 2012. From this database the financial infor-
mation of the meat processing companies were filtered. In order to do this, we used 4-digit 
NACE statistical classification of economic activities, namely the companies grouped into 
‘Production and preserving of meat’ as well as ‘Production of meat and poultry meat prod-
ucts’ based on their main activity. ‘Production and preserving of poultry meat’ is excluded 
from the sample, since the focus of this study is to analyze the pork meat processors. A 
better partitioning of the companies is not possible due to data availability. The database 
were collected by the National Tax and Customs Administration of Hungary and obtained 
from the Databank of the Research Centre for Economic and Regional Studies, Hungarian 
Academy of Sciences.
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where σν and σu are the standard deviations of the idiosyncratic and the inefficiency terms, 

respectively. Technical efficiency of the given firm at a given time is exp(−uit) as it was 

introduced in equation (2). Industry-level efficiency is simply the mean of the firm-level 

efficiencies as the sample covers the industry fairly well. 

   Finally, there are several differences between the two applied models, but we want to 

highlight one important feature. The fixed effects model treat time-invariant firm-specific 

heterogeneity completely as inefficiency, because there is one common intercept for every 

firm. Deviations from this intercept are labeled as inefficiencies. On the other hand, the ‘true’ 

fixed effects estimator completely separates time-invariant firm-specific heterogeneity and 

inefficiency. Time-invariant heterogeneity is not treated as inefficiency. Clearly, these two 

extremes are possible in this framework. Estimating both of the models and comparing the 

estimated inefficiencies will define a lower and upper bound of inefficiency for every given 

firm (and for the meat processing industry as a whole). 

Functional Form 

SFA is a parametric approach that requires the explicit determination of the production 

function. The most common functional forms are applied, translog and Cobb–Douglas 

production functions. Both of these functions are linear after logarithmic transformation. 
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where n = 1, 2, …, N is the number of inputs used for production. This very flexible 

functional form also allows second-order approximation to an arbitrary production function. 

A restricted version of this function is the Cobb–Douglas production function where all the 

βnm parameters are set to be zero. 

   Principle of parsimony indicates that the simplest model should be chosen. The Cobb–

Douglas model is nested in the translog model, therefore we can use likelihood ratio test to 
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The annual datasets were combined into a balanced panel, i.e. we analyzed the same 
firms for a given period of time. The panel used by Reiff et al. (2002) was constructed 
the same way. Our balanced panel covers the time period between 2000 and 2012. Some 
observations were dropped, because of unreliable data values (zero revenue or labor cost 
or depreciation).

The final dataset contains 94 companies. Bakucs et al. (2010) indicate that there are 100 
companies on average in the Hungarian meat processing industry, which means that our 
panel can give a reliable picture about this industry.

The regional distribution of the firms is given in Figure 1. The distribution is approximately 
uniform indicating that the database represents well the geographical distribution of the 
Hungarian meat processors.

Figure 1
Regional distribution of the firms in the sample

           Source: based on the dataset collected by the National Tax and Customs Administration of Hungary

We used two main set of variables to conduct this analysis. Production function estimation 
was carried out using Net sales revenues, Material-type expenditures, Payments to personnel 
and Depreciation. On the other hand, efficiency measures were explained by Pre-tax profit 
or loss, as well as by Large company, and Domestic ownership dummy variables. Large 
company dummy is 1 if the company employs more than 100 people. Domestic ownership 
dummy is 1 if more than 50% of the issued capital is held by domestic owners, and 0 
otherwise. Table 1 shows a summary of these variables in 2000 and in 2012.
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Table 1
Variables used for estimation and some descriptive statistics

in 2000 and in 2012 (financials are in thousand HUF)

Variable Mean Standard deviation Minimum Maximum

Panel A. Year 2000

Net sales revenues  1,139,732 4,251,223 4,968 37,731,279

Material-type 
expenditures 977,392 3,553,735 3,916 31,206,015

Payments to personnel 90,546 471,613 3 4,451,029

Depreciation 22,057 101,871 12 956,964

Pre-tax profit 54,181 385,596 -952,430 3,186,446

Large company (dummy)  0.10 0.30 0 1

Domestic ownership 
(dummy)  0.85 0.36 0 1

Panel B. Year 2012

Net sales revenues 2,839,930 11,327,823 16 92,751,314

Material-type 
expenditures 2,523,846 10,442,258 1,508 89,354,469

Payments to personnel 217,162 854,406 447 7,996,999

Depreciation 43,965 163,615 31 1,495,759

Pre-tax profit -7,749 281,310 -1,348,647 1,564,451

Large company (dummy) 0.15 0.36 0 1

Domestic ownership 
(dummy) 1 0 1 1

Notes: financials are in current prices
Source: own calculations based on the dataset collected by the National Tax and Customs Administration of Hungary

Table 1 clearly shows that small companies dominate the sample, but there are some big 
players in the industry. Domestic ownership is dominant.

Figure 2 shows the distribution of the sample based on number of employees. The sample 
contains closely the same number of companies in the four smallest categories, but the 
number of firms is decreasing in the last three categories. This pattern is quite common in 
every industry. The largest Hungarian meat processor had 2,708 employees in 2012.
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Figure 2
Distribution of the sample based on number of employees (2012)

           Source: based on the dataset collected by the National Tax and Customs Administration of Hungary

Financial statements use current prices thus it is necessary to deflate them. We use different 
deflators for different data series. Revenues and pre-tax profits are deflated using industrial 
producer price index of meat processors, payments to personnel are deflated by the index 
of average gross earnings in the meat processing industry, depreciation is deflated by capital 
goods price index, and input prices are deflated using agricultural producer price index of 
pigs for slaughter. The Hungarian Central Statistical Office published all the price indices.

Using different deflators makes it possible to account for relative price changes occurred 
in the analyzed time period.

Results and Discussion

Estimations of stochastic frontier functions were conducted using Stata Statistics software. 
We applied the program developed by Belotti et al. (2013) for estimation purposes.

First, we will present the result of the traditional fixed effects estimation that will be 
followed by the results of the ‘true’ fixed effects estimation. Finally, the two result will be 
confronted.

Results of the Fixed Effects Estimation

Fixed effects estimation was carried out using translog production function and Net sales 
revenues as dependent variable. Result are visible in Table 2.
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contains closely the same number of companies in the four smallest categories, but the 

number of firms is decreasing in the last three categories. This pattern is quite common in 
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Figure 2 

Distribution of the sample based on number of employees (2012) 

 
Source: based on the dataset collected by the National Tax and Customs Administration of Hungary 

Financial statements use current prices thus it is necessary to deflate them. We use different 

deflators for different data series. Revenues and pre-tax profits are deflated using industrial 

producer price index of meat processors, payments to personnel are deflated by the index of 

average gross earnings in the meat processing industry, depreciation is deflated by capital 

goods price index, and input prices are deflated using agricultural producer price index of pigs 

for slaughter. The Hungarian Central Statistical Office published all the price indices. 

   Using different deflators makes it possible to account for relative price changes occurred in 

the analyzed time period. 

 

Results and Discussion 

 

0

2

4

6

8

10

12

14

16

18

20

0-5 6-10 11-20 21-50 51-100 101-200 201-

N
um

be
r o

f f
irm

s 

Number of employees 

20% 17% 18% 19%

11%
9%

6%



Production Efficiency Analysis of the Hungarian Meat Processing Industry 35

Table 2
Results of the fixed effects stochastic frontier estimation 

(dependent variable: ln(Net sales revenues))

Variable Coefficient Std. error p-value

ln(Material-type expenditures) 1.890 0.105 0.000

ln(Payments to personnel) -0.254 0.088 0.004

ln(Depreciation) 0.070 0.084 0.404

ln(Material-type expenditures)2 -0.055 0.010 0.000

ln(Payments to personnel)2 0.012 0.005 0.021
ln(Depreciation)2 -0.015 0.006 0.023
ln(Depreciation) × 
ln(Material-type expenditures) 0.019 0.012 0.124

ln(Depreciation) × 
ln(Payments to personnel) -0.008 0.010 0.441

ln(Payments to personnel) × 
ln(Material-type expenditures) 0.020 0.014 0.139

Source: own estimation

Gong and Sickles (1992) conclude that fixed effects estimation yields favorable results. 
However, being as accurate as possible, we also estimated the same production function 
assuming randomly assigned firm-specific inefficiencies (i.e. the random effects model). 
Hausman test indicates that the two parameter estimates are systematically different (p-value 
is 0.000), i.e. firm-level inefficiency and explanatory variables seem to be correlated.

Despite the fact that there are some insignificant variables, likelihood ratio test rejects 
the null hypothesis of Cobb–Douglas production function with a p-value equals to 0.000.

In this framework, time-invariant production efficiency can be calculated using the 
method discussed above. Average production efficiency is low, only 0.50, indicating that 
output can be doubled in average using the same quantity of inputs (i.e. labor, capital and 
raw materials). The most efficient firm (having an efficiency level of 1 in this framework) 
is a relatively small company. However, the largest company based on headcount has an 
efficiency score of 0.61 indicating that it is more efficient than the average. Figure 3 shows 
the kernel density function of efficiencies. Results can be interpreted in two ways: There are 
many very inefficient companies in this industry or there are some firm-specific effects we 
failed to observe and therefore treated them as being inefficiencies.
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Figure 3
Kernel density estimation of firm-specific efficiencies

(fixed effects model)

                   Source: own estimation

Note that those firms closed their factories or entered the market in the analyzed time 
period are not in the sample. It is very likely that these firms’ efficiency were lower or 
higher, respectively. Low level of efficiency can be one important reason why they stopped 
operating and new entrants probably have better technology and therefore are able to 
produce more efficiently. Taking these effects into account, industry-level efficiency may 
be slightly biased, but this probably does not affect the overall conclusions of this analysis.

Results of the ‘True’ Fixed Effects Estimation

Fixed effects estimation yields time-invariant inefficiency scores. However, a 13-year-long 
period is long enough to execute some measurements in order to improve efficiency or ef-
ficiency can also decrease due to poor management or production decisions or other varia-
tions. Thus, we calculated time-varying production efficiency by applying the ‘true’ fixed 
effects approach. This model was also estimated assuming translog production function. 
In order to account for technological change, the model also includes squared time trend.

The ‘true’ fixed effects model requires distributional assumptions for the inefficiency 
term. We use the exponential distribution function. Log variance (i.e. ln(1/λ2)), which is 
also the logarithm of the square of the mean of the distribution, was modelled as being 
dependent from Pre-tax profit or loss, Large company, and Domestic ownership dummies 
and squared time trend. Table 3 contains the estimation results.
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Table 3
Results of the ‘true’ fixed effects stochastic frontier estimation

Variable Coefficient Std. error p-value

Panel A. Stochastic frontier (dependent variable: ln(Net sales revenues))

ln(Material-type expenditures) 0.369 0.055 0.000

ln(Payments to personnel) 0.519 0.029 0.000

ln(Depreciation) 0.108 0.037 0.004

ln(Material-type expenditures)2 0.060 0.004 0.000

ln(Payments to personnel)2 0.067 0.003 0.000

ln(Depreciation)2 0.017 0.003 0.000

ln(Depreciation) × 
ln(Material-type expenditures) 0.004 0.005 0.455

ln(Depreciation) × 
ln(Payments to personnel) -0.042 0.004 0.000

ln(Payments to personnel) × 
ln(Material-type expenditures) -0.109 0.007 0.000

t -0.084 0.004 0.000

t2 0.005 0.000 0.000

Panel B. Square of mean and variance of inefficiency distribution (ln(1/λ2))

Pre-tax profit  -4.35e-07  2.48e-07 0.080

D(Large company) -0.985 0.231 0.000

D(Domestic ownership) -1.524 0.209 0.000

t -0.514 0.084 0.000

t2 0.041 0.006 0.000

Constant -1.347 0.337 0.000

Source: own estimation

Results of the likelihood ratio test for the joint significance of the squared and interaction 
terms clearly indicate that translog function is the preferred one and rejects the null 
hypothesis of Cobb–Douglas production function (p-value is 0.000).

The mean value of firm-level efficiencies is 0.88. Kernel density estimation of firm-level 
efficiencies is given in Figure 4. Based on these figures, firm-level efficiencies are high in 
average, and there are only a few number of very inefficient firms. However, it is important 
to note that this procedure treats all time-invariant effects as firm-specific effects and not as 
inefficiencies. Indeed, it is more credible that at least a portion of these effects is inefficiency.
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Figure 4
Kernel density estimation of firm-specific efficiencies

(‘true’ fixed effects model)

                                Source: own estimation

It is important to analyze what drives firm-level (in-)efficiencies. Mean value of inefficiency 
was explained using some explanatory variables. Panel B of Table 3 contains the results. It is 
important to note that positive sign of a parameter indicates that the given variable increase 
(the mean value and the variance of) inefficiency and negative sign indicates inefficiency 
reduction. According to Panel B of Table 3, higher pre-tax profit ceteris paribus decreases 
inefficiency, i.e. profitability and efficiency correlate positively, indicating that the more 
efficient a company is the higher profit can it generate. This is in line with microeconomic 
theory, but contradicts the findings of Keramidou et al. (2013). Larger firms also tend to 
be ceteris paribus more efficient. Interestingly, domestic ownership is also associated with 
ceteris paribus higher efficiency.

Besides these factors, time trend makes it possible to analyze the changes occurred in 
the 13-year-long time period. Both Panel A and Panel B of Table 3 contain squared time 
trend. Time trend of Panel A shows technical changes. Positive sign indicates technology 
improvement, i.e. an upward shift in the production frontier, which means that all the 
companies are able to produce more output in period t compared to period (t − 1). Figure 
5 shows that this was negative until 2007, when it turned into a positive value. However, 
the potential output in 2012 is still significantly lower than it was in 2000. The high average 
efficiency showed earlier was calculated based on the worsening production frontier which 
makes that value less favorable.
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Figure 5
Estimated annual change of mean inefficiency and technical change

         Source: own estimation

Panel B of Table 3 shows the time trend of the inefficiency distribution. While technical 
change is preferred to be positive; in this case, negative values are more favorable, because 
these show lower inefficiencies. The annual changes are also plotted in Figure 5. It shows 
that mean level of efficiency improved until 2005. Since 2006, mean efficiency descended 
year by year, and this trend continued during the global financial crisis. Between 2009 and 
2012, mean inefficiency ceteris paribus increased by more than 20% annually. This is a 
colossal number and can be an important factor behind the bankruptcies happened.

Comparison of the Results

The fixed effects and the ‘true’ fixed effects models yielded different results in terms of ef-
ficiencies. This is meanly due to the different treatment of firm-specific heterogeneity. In 
the fixed effects model, inefficiency completely captures firm-specific heterogeneity, on the 
contrary, the ‘true’ fixed effects estimator separates these two factors entirely. It is likely that 
some portion of the firm-specific heterogeneity is inefficiency; therefore, the two models 
provided a lower and upper bound of efficiencies.

Based on the results, the average efficiency of the Hungarian meat processors is between 
0.50 and 0.88. Compared to other EU countries, the results show that Hungarian meat 
processors are as efficient as their European peers are. The average efficiency of the 
Catalonian meat processors is 0.53 (Kallas–Lambarraa 2010) and the Greek companies 
achieved an average efficiency score of 0.70 (Keramidou et al. 2013).

Another important difference between the two models is that the ‘true’ fixed effects model 
allows efficiencies to alter in time. This provides therefore a more accurate estimation. 
Based on these considerations, we argue that real efficiencies are closer to the estimations 
of the ‘true’ fixed effects model, nevertheless, they have to be lower than those estimates. 

reduction. According to Panel B of Table 3, higher pre-tax profit ceteris paribus decreases 

inefficiency, i.e. profitability and efficiency correlate positively, indicating that the more 

efficient a company is the higher profit can it generate. This is in line with microeconomic 

theory, but contradict the findings of Keramidou et al. (2013). Larger firms also tend to be 

ceteris paribus more efficient. Interestingly, domestic ownership is also associated with 

ceteris paribus higher efficiency. 

   Besides these factors, time trend makes it possible to analyze the changes occurred in the 

13-year-long time period. Both Panel A and Panel B of Table 3 contain squared time trend. 

Time trend of Panel A shows technical changes. Positive sign indicates technology 

improvement, i.e. an upward shift in the production frontier, which means that all the 

companies are able to produce more output in period t compared to period (t − 1). Figure 5 

shows that this was negative until 2007, when it turned into a positive value. However, the 

potential output in 2012 is still significantly lower than it was in 2000. The high average 

efficiency showed earlier was calculated based on the worsening production frontier which 

makes that value less favorable. 

 

Figure 5 

Estimated annual change of mean inefficiency and technical change 

 
Source: own estimation 
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To conclude, data indicates that the technical efficiency of the Hungarian meat processors 
is not lower than in other European countries or in other industries (e.g. retailing or 
farming). One problem can be the dynamics of the efficiencies that show a decreasing trend 
accelerated in the wake of the global financial crisis.

The global financial crisis hit Hungary in 2008 causing income reduction due to rising 
unemployment rate and increasing taxes. Meat consumption fell as well. Between 2007 
and 2012, per capita pork meat consumption decreased by 11.2%. Gross output value of 
domestic manufacturers is also decreasing from 2007 onwards (even in nominal values). 
This shows that it also exists a substitution effect towards cheaper (and perhaps less 
profitable) products.

Due to these courses meat processors excess capacity have to have increased. This is in 
line with the findings of the production efficiency analysis, namely, that inefficiency ceteris 
paribus increased significantly after 2008 (Figure 5).

Decreasing efficiency and lower capacity utilization causes higher average cost2 that 
negatively influences profitability and possibly causes heavy losses. After 2011, when 
demand reduction accelerated, many meat processors reached their shutdown point and 
went bankrupt.

This explanation is further supported by the fact that the largest meat processors have 
gone bankrupt. This is a reasonable assumption that these manufacturers had the highest 
fixed costs as well as they were the most affected by the continuous reduction in demand 
(smaller firms can easier find a market niche to maintain sales volume).

Conclusion

This study investigated the production efficiency of the Hungarian meat processing in-
dustry. Meat processors are an important part of the Hungarian industry, and between 
2011 and 2013 many high-capacity meat processors went bankrupt or had serious financial 
problems.

We estimated firm-level efficiencies and identified the relevant factors affecting those 
efficiencies. Results suggest that profitability, domestic ownership and company size are the 
main determinants. The more profitable a firm is, ceteris paribus the higher the production 
efficiency of the given firm.

Unfortunately, a negative time trend is visible in average technical efficiency after 2006 
that accelerated after 2008. One possible reason for that could be the reduction in pork meat 
consumption. This can be an important factor behind the bankruptcies in recent years. 
Therefore in case of financial support, we suggest that the government should lay emphasis 
on the importance of efficiency improvement and define some objective productivity KPIs 
in order to monitor the progress made by the new management. If production efficiency is 
not improving, then it will not be worth financing the company in the future.

The main limitation of the research is that we used a balanced panel dataset (due to data 
availability issues). Therefore, those companies finished or began their operation between 
2000 and 2012 are not in the sample. Those firms which abandoned their activity were 

2 If production volume decreases, only variable costs can be saved, fixed costs remain the same.
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probably less efficient than their competitors are, but it is likely that new entrants have 
better technology and therefore are able to produce more efficiently. The result of these two 
adverse effects is not known, but the estimation bias is probably not too large.
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