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INTRODUCTION

In the financial area of today an important question is: how 
one defines and measures the risk of financial assets such as 
stocks and portfolios. Furthermore, it is not enough only to 
measure risks they also need to be compared to help us to 
take decisions on different financial questions. Because of 
these comparability reasons one uses instead of the prices 
the returns of an asset.
In this paper we will be dealing with the simple and the 
logarithmic returns. It is self-evident and natural that these 
two returns are different from each other. For example Hud-
son considers this relationship by comparing means and con-
cludes that the mean of the logarithmic returns is less than 
the mean of the simple return (computed on the same set of 
returns) (Hudson, 2010). We will discuss the possible cor-
relations and differences between the two returns from an 
other point of view. For our purposes it is important to un-
derstand how the choice of the return-type effects the riski-
ness order of the considered set of assets. For example, do 
we consider a stock respectively a portfolio equally risky 
(compare to the others) using simple or logarithmic returns 
to calculate the risk. To answer this question we will do an 
empirical study.

The objective of this paper is to describe and to clarify the 
definitions and the usage of the simple and logarithmic re-
turns. In the first part of the theoretical background we will 
state the definitions of the one- and multi-period simple and 
log return and we will describe the relationship between 
them. These definitions will be extended to portfolios in 
the second part of the theoretical background. The second 
part of the study is the empirical part. First, we would like 
to confirm in practice – via using Hungarian stock data – 
mathematical formulas, equations and results presented in 
the theoretical part. Second, we will answer to our main 
question, i.e. whether using simple or logarithmic return 
could have an effect on our decision.

RETURNS, THE THEORETICAL 
BACKGROUND

In this theoretical part of the paper we summarize the im-
portant definitions, expressions connected with simple and 
logarithmic returns and we clarify and establish relations 
between the two notions. Definitions of the following chap-
ter are based on Tsay (Tsay, 2005) and Calafiore (Calafiore, 
2014).
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Asset Return

First, we will define the simple and logarithmic return of an 
asset. In addition we will show the most important equations 
and expressions connected with the topic.

a. Simple Return

The Oxford dictionary defines the return as a profit on an 
investment over a period of time, expressed as a proportion 
of the original investment. In the next paragraphs we express 
returns in a more mathematical framework. 
In the case of asset returns let us consider a time horizon 
[ ]0,T . Furthermore 0P  be the price of an asset at time 0  and 

TP  the price of an asset at time T . If there is no cash flow in 
this [ ]0,T  time interval, we speak of the one-period simple 
net return and we introduce the notation [ ] [ ]0, 1S

TR . So the one-
period simple net return of an asset can be defined by

1 : 1.= = −[ ] [ ] 0
0,

0 0

S T T
T

P P PR
P P
−  	 ( 1 )

The corresponding one-period simple gross return of an as-
set is given in terms of the simple return:

[ ] [ ] [ ] [ ]0, 0,
0

1 : 1 1 .S S T
T T

PGrR R
P

= + =  	 ( 2 )

Later on if we speak of the simple return we think of the 
one-period simple net return.
For the multi-period case, let us divide the interval [ ]0,T  
into n  pair wise disjoint subintervals: let 0 : 0t =  be the 0th 
time point, :nt T=  be the last time point and let it  be the time 
points in-between, such that 1 ,i it t− <  1, , .i n= …  According to 
our definition we can calculate on these subintervals the one-
period simple gross return: 	

[ ] [ ] [ ] [ ]
1 1

1
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t t t t
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−
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and thus the “return” 

on the whole [ ]0,T  interval must be the product of the gross 
returns of the subintervals. This return is called the n-period 
simple gross return:
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−= =

= + = = =∏ ∏ …

	 ( 3 )

We would like to add that since 0 0t =  and nt T=  the n-period 
simple gross return equals the one-period simple gross re-
turn:

[ ] [ ] [ ] [ ]
0

0, 0,
0

1 .ntS ST
T T

t

P PGrR n GrR
P P

= = =

		

		  ( 4 )

Analogously to the one-period case, we define the n-period simple 
net return by using the n-period gross return and subtracting one:

	
[ ] [ ] n

0

tS
0,T

t

P
R n : 1.

P
= −

	
		  			   ( 5 )

With Equation ( 3 ) and ( 5 ) at hand one can rewrite the n-
period simple gross returns by:

[ ] [ ] [ ] [ ]
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n

0, 0,
i 1

1 .n i
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( 6 )

b. Logarithmic Return/Continuously Compounded 
Return

To understand the logarithmic return, simply the log return, 
let us divide the interval [ ]0,T  into n  equidistant intervals. 
In this paragraph we use the same notation as it was intro-
duced for the multi-period simple return. Assume now, that 
on every [ ]1,i it t−  subinterval the return R  is the same, more-
over that it is the n th part of some one-period return on 
 
[ ]0,T , denoted by [ ] [ ]*

0, 1TR , i.e. [ ] [ ]*
0, 1

: .TR
R

n
=  In this case,   

 
Equation ( 3 ) can be written as follows:
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Since 0t  and  nt  are the 0th and the last time points respec-
tively, Equation ( 7 ) can be written as follows:
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and therefore using Equation ( 7 ) and Equation ( 8 ) it holds 
that
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1
1 .
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Let us make the length of the [ ]1,i it t−  subintervals smaller and 
smaller. This means that the number of equidistant subinter-
vals of [ ]0,T  must grow, n ∞→ . Hence we have to compute 
limits:

[ ] [ ]*
0,

0

1
lim lim 1 ,

n

TT

n n

RP
P n→∞ →∞

 
= + 

 
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and therefore it follows by the definition of the exponential 
function that

[ ][ ]*
0, 1

0

TRTP e
P

= .					     ( 11 )
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Since we are interested in returns, we apply the logarithm:

[ ] [ ]*
0,

0

ln 1T
T

P R
P

 
=   .				    ( 12 )

The return in Equation ( 12 ) is called the one-period loga-
rithmic return of an asset. So, we define the one-period log 
return as the logarithm of the one-period simple gross return 
and we use the notation [ ] [ ]0, 1L

TR :

[ ] [ ] [ ] [ ]( )0, 0,
0

1 : ln ln 1 1L ST
T T

PR R
P

 
= = +  

	

.		 ( 13 )

Similarly to the simple return’s case, one defines the n-
period logarithmic return:

 [ ] [ ] [ ] [ ]1 2

1

0 1 1 1

0, , 
1 1

: ln , , ln 1n i

i i

n t

n n
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We can see that in this case the n-period log return is the sum of 
the n  one-period log returns. And this is one of the reasons why 
one uses the log return rather than the simple return: adding 
numbers close to zero is not a problem, but multiplying numbers 
close to zero can cause arithmetic overflow. In addition it is 
easier to derive the time series properties of sums than of prod-
ucts (Daníelsson, 2011). Analogously to the simple return’s case 
since 0t  and  nt  are the 0th and the last time points respectively:

[ ] [ ] [ ] [ ]0, 0,1L L
T TR R n= .	 ( 15 )

We would like to add, that more generally on every interval one 
can calculate the return. In this study we will use daily asset 
prices and thus daily returns. So, the considered time interval 
will always be one day. Therefore, the one-period simple and 
logarithmic return can be written as follows:

[ ] [ ]1,
1

: 1 1S S t
t t t

t

PR R
P−

−

= = − 	 ( 16 )

and

[ ] [ ]1,
1

: 1 : lnL L t
t t t

t
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P−

−

 
= =   

  .	 ( 17 )

Later in this study we will use Equation ( 16 ) and Equation ( 17 ) 
for the calculations and we will speak of the return at time point 
t . Note that one can easily see the relation between the simple 
and log return:

1
L
tRS

tR e= − 	 ( 18 )

and

( )ln 1L S
t tR R= + .	 ( 19 )

It can be deduced – using an approximation of the loga-
rithm that ( )ln 1 x x+ ≈ , if x  is near to zero – that if the 
simple return is near to zero it is in addition very compa-
rable to the log return (proof follows just by substitution of 
x  with the simple return):

[ ] [ ] [ ] [ ] [ ] [ ]
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Portfolio Return

In this section we will focus on how to calculate the simple 
and the logarithmic return of a portfolio. We use the fol-
lowing notation:
n : the number of assets in the portfolio
i : refers to the assets in the portfolio, 1, ,i n= …
tS : the amount of money invested in the portfolio at time t
,t iS : the amount of money invested in asset i  at time t
,t iP : the price of asset i  at time t
,t iw : relative weights of the asset i  in portfolio at time  t
ik : number of asset i  in portfolio

Let us consider a portfolio which consists of n assets. Using 
the notation above it is natural that the amount of money 
invested in asset i  at time t  can be expressed by

, , ,t i i t i t i tS k P w S= = ,	 ( 21 )

and the amount of money invested in the portfolio at time 
t  is given by

, ,
1 1

n n

t t i i t i
i i

S S k P
= =

= =∑ ∑ .	 ( 22 )

With equation ( 21 ) and ( 22 ) in hand we can express the 
relative weights at time t :

 , ,
,

,1

t i i t i
t i n

t i t ii

S k P
w

S k P
=

= =
∑

.	 ( 23 )

These relative weights change in time according to the as-
set prices. In this study later on, if we speak of weights we 
always think of these relative weights. Note, that the rela-
tive weights sum up to one: 

,
1

1.
n

t i
i

w
=

=∑ 	
	 ( 24 )

a. Simple Return of a Portfolio

In this section we will show how to calculate the simple re-
turn of a portfolio (denoted by S

tR ).  Similarly to the simple 
return of an asset we can define the simple return of a port-
folio at time t  the gain (or loss) in value of the portfolio 
relative to the starting value, mathematically (Bacon, 2011):

1

: 1S t
t

t

SR
S −

= − .	 ( 25 )



130	 Panna Miskolczi

APSTRACT Vol. 11. Number 1-2. 2017. pages 127-136.	 ISSN 1789-7874

Using the fact that the weights sum up to one and the  

equation 
,

,
1,

1t iS
t i

t i

P
R

P−

= − , where ,
S
t iR  is the simple return of  

asset i  at time t , Equation ( 22 ) can be rewritten as

( ) ( ) ( ), 1, , 1, , 1 1, ,
1 1 1 1

1 1 1
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t i t i i t i t i t i t i t t i t i

i i i i
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= = + = + = +∑ ∑ ∑ ∑ 	( 26 )

and thus we can express the simple return of a portfolio at 
time t  by

1, ,
11

1
n

S St
t t i t i

it

SR w R
S −

=−

= − = ∑ .	 ( 27 )

We can see that the portfolio simple return is the sum of the 
weighted simple returns of the constituents of the considered 
portfolio.

b. Logarithmic Return/Continuously Compounded 
Return of a Portfolio

The logarithmic return of a portfolio (denoted by 
L
tR ) at 

time t  can be defined analogously to the logarithmic return 
of an asset: 

1

: lnL t
t

t

SR
S −

 
=   

.	 ( 28 )

Moreover using the relation between logarithmic and 
simple return (see Equation ( 13 ) and Equation ( 27 ) the 
logarithmic return of a portfolio can be calculated in the 
following way:

,
1, , 1,

1 11

ln ln 1 ln
L
t i

n n
RL St

t t i t i t i
i it
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where ,
L
t iR  is the log return of asset i  at time t .

Unfortunately the log return of a portfolio does not have a 
similar convenient property as it was developed in Equation 
( 27 ) for the case of the simple return, so it cannot be writ-
ten as the sum of the weighted log returns of the constituents 
of the considered portfolio. Similarly to the return of an as-
set – by using the ( )ln 1 x x + ≈  approximation – one can 
show, that if the simple returns of a portfolio are close to 
zero then the simple returns and the log returns of a portfolio 
are similar to each other:

( )ln 1L S S
t t tR R R= + ≈ .	 ( 30 )

Using the assumptions that the simple returns are close to 
zero, and the definition of the exponential function one can 
nevertheless deduce the following linear approximation:

( ) ( )( ),
1, , 1, , 1,

1 0 1 1

1 1 1
!

jLn n n
t iL S L L

t t t i t i t i t i t i
i j i i

R
R R w R w R w

j

∞

− − −
= = = =

 
 ≈ = − ≈ + − =
  

∑ ∑ ∑ ∑ .	 ( 31 )

So in this case	 , 1,
1

n
L L
t t i t i

i

R R w −
=

≈ ∑ .		  ( 32 )

EMPIRICAL STUDIES

The data

For the empirical calculation we will work with Hungarian 
daily stock prices between 01.07.2005 and 29.06.2015. The 
data was downloaded from the Budapest Stock Exchange 
homepage (www.bet.hu). We focus on seven stocks, name-
ly FHB, MOL, MTELEKOM, OTP, Pannergy, Raba and 
Richter and analyze them in the mentioned time interval. 
The missing values were filled by the previous day data. To 
perform the analysis we use the mathematical software R. 
We plot the stock prices in (Figure1), which shows that pric-
es cannot be used for comparisons.

Figure1: Stock prices (gray: FHB, black: MOL, red: MTELEKOM, 
green: OTP, purple: Pannergy, light blue: Raba, magenta: Richter) 

Comparing simple and logarithmic returns

We could see in the asset and in the portfolio case that if the 
simple returns are close to zero then the simple and log re-
turns are close to each other. In the first part of this empiri-
cal study we will check this theoretical fact in practice. The 
first price data is from 01. 07. 2005 and we consider them as 
price data at time 1t = . The last ones are from 29. 06. 2015 
and we consider them as price data at time 2607. Note, that 
the “first” returns can be calculated on the interval 
[ ]1, 2t t= =  and they are denoted by 2,

S
iR  and 2,

L
iR  respec-

tively, for all the seven stocks ( 1, ,i n= … ).
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a. Stock returns

First we calculated the daily simple and logarithmic re-
turns of all the individual stocks using Equation ( 16 ) and 
Equation ( 17 ). In order to show the results more clear we 
introduced two outliers in the case of the Richter and Pann-
ergy stocks (check the minimum values). The basic statistics 
are summarized in Table 1 and Table 2. From these summa-
ries we can clearly see that in both cases the returns are close 
to zero: the medians are zero and the interquartile ranges 
are relatively small. Later on in this study we will use this 
modified data. Comparing Table 1 and Table 2 one can say 
that the distributions of the simple and logarithmic returns 
are really close to each other.

b. Portfolio returns

Let us consider a portfolio: We assume that we own a port-
folio consisting of one from all the seven stocks, i.e. 

1,  1, ,7ik i= = …  (see notation in the theoretical part). First we 
calculate the simple and the log returns of the portfolio using 
Equation ( 27 ) and Equation ( 28 ) respectively. The values 
are summarized in box plots, see (Figure 2). As we men-
tioned in the theoretical part, the log return and the simple 
return should be similar if the simple returns are close to 
zero (see Equation ( 30 )). In (Figure 2) we can clearly see 
that in the case of our data the simple and the log returns are 
close to zero except one outlier in both cases. This means 
that the simple and a log return values are very close to each 
other. This conclusion could be confirmed by taking a look 
at (Figure 3), where the simple return of the portfolio was 
plotted against the log return of the same portfolio. Except 
one outlier all the values are lying on the 45° line.

Figure 2. Box plots of portfolio simple (left) and portfolio logarithmic 

return (right) values

Figure 3. Comparing portfolio simple and logarithmic returns

Comparing riskiness order 

From the fact, that the distributions of the stock simple and 
logarithmic returns are really close to each other (see sec-
tion ‘Comparing simple and logarithmic returns’) we may 
conclude that it does not depend on whether we use simple 
or log returns for the financial calculations. We will check 
this assumption using different risk measures and using the 
ordering method described in the introduction. 
We calculate four from the most often and widely used risk 
measures: the standard deviation, the semivariance, the Val-
ue at Risk and the Expected Shortfall. Detailed descriptions 
of this risk measures one can find for example Bugár (Bugár, 
2006) and Embrechts (Embrechts, 2005). 
In the next step we state how to calculate these risk measures 
in the case of a realization of a random variable. 

Let ( )1, , nr r r= … , where ir  is the i th return (i 1, , n= … )  

and r  the average of these returns (
1

1 n

i
i

r r
n =

= ∑ ).

a. Standard Deviation

( )
2

1
( )

1

n
ii
r r

r
n

σ =
−

≈
−

∑
	

	 ( 33 )

Table 1: Basic statistics of simple returns: minimum, first quartile, median, mean, third quartile,     maximum

FHB MOL MTELEKOM OTP Pannergy Raba Richter

Min. -0,178975 -0,149750 -0,118151 -0,149854 -0,802770 -0,149809 -0,900179

1st qu. -0,011340 -0,011768 -0,009009 -0,013054 -0,007828 -0,008961 -0,009508

Median 0 0 0 0 0 0 0

Mean 0,000040 0,000183 -0,000170 0,000272 -0,000118 0,000435 -0,000062

3rd qu. 0,009742 0,011833 0,008635 0,013605 0,006466 0,008554 0,009654

Max. 0,232339 0,150583 0,123894 0,232639 0,149826 0,280193 0,094983

Source: own calculation
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b. Semivariance

( ) { }( )2n
ii 1

min r r ,0
SV r

n
=

−
≈ ∑

	

	 ( 34 )

c. Value at Risk - VaR (at α  level)

( ) { } ( )
1 , ,

ˆ
nr rVaR r Fα α←

…≈ − ,	 ( 35 )

where { } ( ) { }1 n i

n

x , ,x x x
i 1

1F x : 1
n

ˆ
… ≤

=

= ∑  is the empirical distribu-
tion 

function and { }ix x1 ≤  is the indicator function of the set  
{ }ix x≤ .

d. Expected Shortfall – ES (at α  level)

( )
*

1

k
ii
r

ES r
kα
=≈ − ∑ ,	 ( 36 )

where [ ] { }k n α      max m | m nα,   m= = < ∈N  and 
*
ir  is the i th 

element in the increasing order of the returns ir : 
* * *

1 2 nr r r≤ ≤ …≤ .
The only risk measure which satisfies the expected proper-
ties (monotonicity, subadditivity, positive homogeneity, cash 
invariance/translation invariance) is the Expected Shortfall. 
Further discussion on this topic for example (Acerbi, 2002) 
and (Artzner, 1999).

a. Stocks

First we consider the stock returns and we calculate the stan-
dard deviation, the semivariance, the VaR and the ES val-
ues. They are shown in (Figure 4). The purple bars indicate 
the values calculated using simple returns and the blue bars 
indicate the values calculated using log returns. We can see 
that in the case of the semivariance and VaR (at both 

0,05α =  and 0,01α =  levels) the order does not depend on 
the type of return. If we use the semivariance as a risk mea-
sure the riskiest stock is the Richter, followed by Pannergy, 
OTP, FHB, MOL, Raba and MTELEKOM. In the case of 

VaR, the riskiest stock is the OTP, followed by the stocks 
MOL, FHB, Richter, Raba, Pannergy and MTELEKOM. At 

0,01α =  level the order is the following: OTP, FHB, MOL, 
Raba, Pannergy, MTELEKOM, Richter.

In the case of standard deviation and ES the contrary was 
observed: the order does depend on the type of return. Using 
the simple return for risk calculation the OTP stock has the 
highest standard deviation value. The OTP is followed by 
Richter, Pannergy, FHB, MOL, Raba and MTELEKOM. If 
we use the log return for risk calculation, then the aforemen-
tioned order changes: the riskiest is the Richter, followed 
by Pannergy, OTP, FHB, MOL, Raba, MTELEKOM. For 
example, the OTP stock what was the riskiest using simple 
returns, in the case of the log return is only on the 3rd place. 
Let us consider now the ES. At the level of 5%, using simple 
returns for the calculations we got the following order: OTP, 
FHB, MOL, Pannergy, Richter, Raba, MTELEKOM; while 
using log returns the order changes as follows: OTP, Richter, 
Pannergy, FHB, MOL, Raba, MTELEKOM. We can see, 
that for example the Richter stock is the second riskiest stock 
in the case of using log returns, but it is just on the 5th place 
in the case of simple returns. At the level of 1% the riskiness 
order also different concerning simple or log returns. In the 
case of simple returns the riskiest asset is the OTP, followed 
by Pannergy, Richter, FHB, Raba, MOL and MTELEKOM. 
In the case of logarithmic returns the riskiest asset is the 
Richter, followed by Pannergy, OTP, FHB, Raba, MOL and 
MTELEKOM.
This calculation shows, that despite the fact that the simple 
and log returns are comparable, our assumption, that the 
result does not depend on whether we use simple or log re-
turn seems to be not correct. We could show, that the only 
coherent risk measure, the Expected Shorfall, gives different 
riskiness orders for the same stocks depending on whether it 
was calculated using simple or log returns. And this can lead 
to different decisions.

b. Portfolios

In the case of portfolios, we consider seven portfolios, each 
of these portfolios consist of six distinguishing stocks (we 
just leave away one of the seven stocks) and we calculate the 
risk of all these portfolios in order to generate a “riskiness 
order”. To calculate the risk we consider the two most often 
used risk measures: the Value at Risk (see Equation ( 35 )) 

Table 2: Basic statistics of logarithmic returns: minimum, first quartile, median, mean, third quartile, maximum

FHB MOL MTELEKOM OTP Pannergy Raba Richter

Min. -0,197201 -0,162225 -0,123734 -0,162347 -1,623385 -0,162294 -2,305382

1st qu. -0,011404 -0,011837 -0,009050 -0,013140 -0,007859 -0,009001 -0,009553

Median 0 0 0 0 0 0 0

Mean -0,000245 0,000075 -0,00314 -0,000089 -0,000620 0,000206 -0,000767

3rd qu. 0,009695 0,011764 0,008597 0,013513 0,006445 0,008518 0,009608

Max. 0,208914 0,140269 0116799 0,209157 0,139610 0,247011 0,090739

Source: own calculation
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and the Expected Shortfall (see Equation ( 36 )) at 0,05α =  
and 0,01α =  levels. The results are shown in Table 3. The 
numbers in the table show the riskiness order of the portfolio 
calculated by using VaR and ES in case of simple returns 
respective log returns at two different alpha levels. One can 
observe, that VaR is stable on both levels, meaning the order 
does not depend on the choice of return. In the case of the 
ES at 0,01α =  level – similarly to the VaR – the two orders 
are the same. To the contrary for 0,05α =  level: the first 
and the second portfolio switched positions. And our deci-
sion can be influenced by this different riskiness order.
We can clearly see from the results, that not only the type of 
the return, or the chosen risk measure but also the level of 
alpha (given the risk measure) has a decisive effect on the 
order, and hence on the decision. For example at 0,05α =  
level the ES measures Portfolio7 is one of the riskiest port-
folio. But, in contrast, at 0,01α =  level, Portfolio7 is the 
least risky portfolio from these seven portfolios.

Table 3. Riskiness order of portfolios using simple and logarithmic 

returns

VaR ES
alpha 0,05 0,01 0,05 0,01
return simple log simple log simple log simple log
Portfo-

lio1
6 6 4 4 6 6 5 5

Portfo-
lio2

2 2 2 2 2 1 1 1

Portfo-
lio3

5 5 3 3 5 5 4 4

Portfo-
lio4

7 7 7 7 3 3 2 2

Portfo-
lio5

4 4 6 6 7 7 6 6

Portfo-
lio6

3 3 5 5 4 4 3 3

Portfo-
lio7

1 1 1 1 1 2 7 7

Figure 4. Standard Deviation, Semivariance, VaR and ES values calculated using simple (purple bars) and logarithmic (blue bars) returns

Source: own calculation
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Using approximations

In literature one can regularly see that the relative weights 
are substituted by 1/ n, where n  is the number of assets in 
the portfolio. One reason for this could be that one wants 
that the weights are constant in time, because the relative 
weights are changing in time since they are calculated from 
the prices (see Equation ( 23 )). Another argument for using 
approximation is that in practice sometimes one does not 
know the asset prices (for example, a simulation result gives 
only returns). In the absence of the prices one cannot calcu-
late the relative weights and in the absence of the relative 
weights it is not possible to calculate the portfolio return.
In this last part of our study we would like to show – using 
our ordering method – the effect of an approximation on the 
riskiness order. We will consider again the portfolios which 
were constructed in section ‘Comparing riskiness order, 
Portfolios’. To calculate the simple return of a portfolio we 
will use equation ( 27 ), and we will approximate the weights 

with 1/ n: 1 ,  1, ,iw i n
n

≈ = …  and such that we consider an  

equally weighted portfolio. This approximation turns to ex-
act equation if we consider a portfolio which consists of 
same number of all the assets ( ,  ,  , 1, , i jk k i j i j n= ≠ = … ) 
and the asset prices are the same. So, we will use the follow-
ing approximation for the portfolio simple return:

,
1

1ˆ
n

S S
t t i

i

R R
n =

= ∑ .	 ( 37 )

In the case of log returns we will consider two different ap-
proximations. For the first one we use Equation ( 28 ) and 
the same assumption as before: we assume that the weights 

are 1/ n ( 1 , 1, ,iw i n
n

= = … ). Therefore:

,L
t

1

1R lnˆ L
t i

n
R

i

e
n =

 
=   ∑ .	 ( 38 )

For the second approximation we will use Equation 	( 31 ), 
which is already an approximation and as a further assump-
tion we consider the weights equal to 1/ n ( 1 , 1, ,iw i n

n
= = …

), similarly to the previous ones. 
So, the second approximation for the portfolio log return can 
be expressed in the following way: 

,
1

1ˆ
n

L L
t t i

i

R R
n =

= ∑ .	 ( 39 )

In (Figure 5) we can see how far away the approximated 
values are from the exact values. The first plot shows the 
approximated values calculated using Equation ( 37 ), the 
middle one shows the approximated values evaluated using 
Equations ( 38 ) and the third plot shows the approximated 
values calculated using Equation ( 39 ). In all the three cases 

there is one outlier. Up to this the point clouds are still dis-
tributed along the 45° line. We may conclude from this, that 
using these approximations we can get similar result than 
using not approximated, exact return values. We would like 
to answer the following questions. First we will check 
whether the riskiness order changes if we use approximated 
simple or approximated logarithmic returns. Second, we 
will compare these orders in the case of approximated and 
exact simple and logarithmic returns. To calculate the risk 
we will use again the VaR and the ES risk measures at two 
different 0,05α =  and 0,01α =  levels.

Figure 5. Approximations of portfolio simple and logarithmic returns

The results are shown in (Figure 6). P1, P2,…, P7 indicate 
the seven different portfolios. The purple bars stand for the 
risk calculated using the approximated simple return data 
(see Equation ( 37 )), the orange and blue ones for the risk 
calculated using the approximated log return data (see Equa-
tion ( 38 ) and Equation ( 39 ) respectively). In the left col-
umn of the figure we can see the Value at Risk values and in 
the right column we can see the ES values. Similarly to the 
previous cases the VaR seems to be more stable, since the 
order does not depend on whether we use simple or log re-
turn. At 0,05α =  level the riskiest portfolio is P5 followed 
by P7, P3, P6, P1, P2 and P4. And at 0,01α =  level we 
calculated the following order: P7, P3, P5, P2, P6, P1, and 
P4. These orders are the same using approximated simple or 
one of the log return data. If we take a look at the ES values 
we can see that here the order of the portfolios changes de-
pending on the type of used approximation method. At 

0,05α =  level we got the same order as in the case of the 
approximated simple return and the first approximation of 
the log return (see Equation ( 38 )), namely: P5, P3, P7,P6, 
P1, P2, P4. But this is different from the order which we get 
if we use the second approximation of the log return (see 
Equation ( 39 )), that is: P3, P5, P6, P1, P2, P7, P4. These 
results are also shown in the last three columns of Table 4 
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and Table 5, where LR  and SR denote the simple and loga-
rithmic returns respectively, while ˆ SR  denotes the approxi-
mated simple returns, and 1

ˆ LR  (see Equation ( 38 ))  and 2
ˆ LR  

(see Equation ( 39 )) the approximated log return.

Figure 6. VaR and ES values for seven portfolios using approximated 
data

Finally let us examine whether the type of data used has an 
effect on the order, i.e. whether approximated or exact data. 
In Table 4 we can see the results using risk measure VaR and 
in Table 5 we can see the results using risk measure ES. The 
result clearly shows a totally different riskiness order on all 
the cases. For example at 5% level the VaR ranked Porfolio2 
on the second place using not approximated data and it is 
on the sixth place when measured with approximated data. 
It is similar in the case of ES: Portfolio2 is in the second or 
first place (depending on the type of the return) using not 
approximated data but in contrast the portfolio is on the fifth 
or sixth place using approximated data. Or Portfolio5 is on 
one hand the less riskiest portfolio if we calculate ES at al-
pha=0,05 level from the exact simple or logarithmic return, 
but on the other hand it is the riskiest portfolio if we cal-
culate the ES at alpha=0,05 level from approximated data. 
Similar results have been found on the level of alpha=0,01. 
For example in the case of VaR Portfolio5 is on the sixth 
place if the value calculated from not approximated data and 
on the third place if the ES is calculated from approximated 
returns. The ES is less stable. Depending on the type of 
return or whether we use approximation the order can vary 
strongly, see for example Portfolio4 or Portfolio5.

Table 4. Order of the portfolios using the risk measure VaR on the level 

of alpha=5% and alpha= 1%.

VaR

alpha 0,05 0,01

return
	 SR 	 LR 	ˆ SR 	

1
ˆ LR 	

2
ˆ LR 	 SR

	 LR
	ˆ SR

	
1

ˆ LR 	

2
ˆ LR

Port-
folio1

6 6 5 5 5 4 4 6 6 6

Port-
folio2

2 2 6 6 6 2 2 4 4 4

VaR

alpha 0,05 0,01

Port-
folio3

5 5 3 3 3 3 3 2 2 2

Port-
folio4

7 7 7 7 7 7 7 7 7 7

Port-
folio5

4 4 1 1 1 6 6 3 3 3

Port-
folio6

3 3 4 4 4 5 5 5 5 5

Port-
folio7

1 1 2 2 2 1 1 1 1 1

Source: own calculation

Table 5. Order of the portfolios using the risk measure ES on the level 
of alpha=5% and alpha= 1%.

ES

alpha 0,05 0,01

return
	 SR

	 LR
	ˆ SR

	
1

ˆ LR
	

2
ˆ LR

	 SR
	 LR

	ˆ SR
	

1
ˆ LR 	

2
ˆ LR

Port-
folio1

6 6 5 5 4 5 5 2 2 2

Port-
folio2

2 1 6 6 5 1 1 5 4 4

Port-
folio3

5 5 2 2 1 4 4 1 1 1

Port-
folio4

3 3 7 7 7 2 2 7 7 5

Port-
folio5

7 7 1 1 2 6 6 4 3 6

Port-
folio6

4 4 4 4 3 3 3 3 5 3

Port-
folio7

1 2 3 3 6 7 7 6 6 7

Source: own calculation

SUMMARY AND CONCLUSION

In this study our goal was to clarify the notion of simple 
and logarithmic return and to show the differences and the 
connections between them. In the theoretical part we stated 
the definitions of the one- and the multi-period simple and 
logarithmic returns.
Equations - presented in the stock case – show, that the 
logarithmic return has an advantage against the simple re-
turn, namely that the multi-period logarithmic return can be 
calculated as a sum of the one-period logarithmic returns, 
while the multi-period simple return is the product of the 
one-period simple returns, which can lead to computational 
problems for values close to zero.
In the case of a portfolio it is important to highlight, that 
the portfolio weights depend on the price of stocks in the 
portfolio. So they change in time. In the case of an equally 
weighted portfolio one has to balance regularly the portfolio. 
It is also important to note, that the simple return of a portfo-
lio is the sum of the weighted simple returns of the constitu-
ents of the considered portfolio. In contrast, the logarithmic 
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return of a portfolio can only be approximated by the sum 
of the weighted logarithmic returns of the constituents of the 
considered portfolio. 
In addition we could see, that if the simple return values are 
close to zero, then the distribution of the simple and logarith-
mic returns are very near to each other. This raises the ques-
tion whether the used return-type (i.e. simple or log return) 
has an effect on the calculations and thus on the results.  In 
the empirical part of our study we wanted to answer this 
question.  We were interested in whether the used return-
type in the calculations results in a different riskiness order.
First we compared the order in the case of the stocks. We 
found that while in the case of semivariance and VaR the 
order does not depend on the type of return, in the case of 
standard deviation and ES it does. After the stocks we con-
sidered portfolios. Six different portfolios were compared 
and ordered according to their risks. The result of our cal-
culation shows, that the VaR does not depend on the use 
return-type, but in the case of the ES we got different orders 
in the two cases.
Furthermore, we investigated what is the effect on this order 
if we use approximated return values – for example we con-
sidered equal weights, which is common in practice - instead 
of the exact values. We have found in every case different 
riskiness orders, sometimes even serious differences. There-
fore, we believe, if this is possible, exact values instead of 
approximated ones should be used for calculations.
In summary, even though the two return-type values are 
very similar, it is not necessary that the riskiness orders are 
the same. It is important that one uses the same type of re-
turn within one study and one has to be aware of the possible 
instabilities when comparing return results.
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