
APSTRACT Vol. 10. Number 4-5. 2016. pages 125-130.	 ISSN 1789-7874

DOI: 10.19041/APSTRACT/2016/4-5/16

Applied Studies in Agribusiness and Commerce – APSTRACT  
Center-Print Publishing House, Debrecen	 SCIENTIFIC PAPER

COMPARING OLS AND RANK-BASED ESTIMATION 
TECHNIQUES FOR PRODUCTION ANALYSIS: 

AN APPLICATION TO GHANAIAN MAIZE FARMS.
Henry De-Graft Acquah

Department of Agricultural Economics and Extension
University of Cape Coast, Cape Coast, Ghana

e-mail: henrydegraftacquah@yahoo.com

Abstract: This paper introduces the rank-based estimation method to modelling the Cobb-Douglas production function as an alternative to 
the least squares approach. The intent is to demonstrate how a nonparametric regression based on a rank-based estimator can be used to es-
timate a Cobb-Douglas production function using data on maize production from Ghana. The nonparametric results are compared to common 
parametric specification using the ordinary least squares regression. Results of the study indicate that the estimated coefficients of the Cobb-
Douglas Model using the Least squares method and the rank-based regression analysis are similar. Findings indicated that in both estimation 
techniques, land and Equipment had a significant and positive influence on output whilst agrochemicals had a significantly negative effect on 
output. Additionally, seeds which also had a negative influence on output was found to be significant in the robust rank-based estimation, but 
insignificant in the ordinary least square estimation. Both the least squares and rank-based regression suggest that the farmers were operating 
at an increasing returns to scale. In effect this paper demonstrate the usefulness of the rank-based estimation in production analysis.

INTRODUCTION

Cobb and Douglas (1928) propose an econometric methodology 
to investigate production functions. This entails specifying a 
linear relationship between inputs and outputs and estimating 
the linear model using ordinary least squares estimation 
technique. Consequently, the parametric estimation of the 
production function has dominated the literature.  However, 
the Cobb-Douglas econometric technique comes with 
associated constraints imposed on the data. 

Some studies highlight the limitations of the parametric 
approaches and propose a non-parametric estimation of 
the production functions. For example Henningsen and 
Kumbharkar (2009) advertised a semi parametric approach 
to efficiency analysis that estimates production function by 
a non-parametric regression approach. Furthermore, some 
studies (Czekaj and Henningsen, 2011) suggest the use of a 
non-parametric method to scrutinize the traditional parametric 
estimation method. Subsequently they provide comparison of 
parametric and non-parametric estimates of the production 
function. However these studies proposing a non-parametric 

estimation do not consider the rank-based non parametric 
estimation technique. This study expands on the parametric 
and non-parametric estimation of production functions by 
exploring the rank based estimation. Rank-based estimators 
have been developed as robust non parametric alternative to 
traditional least squares estimators. Rank-based regression 
was first introduced by Jureckova (1971) and Jaeckel (1972). 
Mckean and Hettmansperger (1978) developed a Newton 
step algorithm that led to feasible computation of these 
rank-based estimates. Kloke and Mckean (2015) developed 
a package (Rfit) for rank-based estimation and inference for 
linear models using R programming language. This paper 
demonstrates that the rank-based non-parametric regression 
offers an alternative and useful approach to estimating the 
production function. The paper is outlined as follows. The 
introduction is followed by the methodology which discusses 
Cobb-Douglas Production Function, Parametric and non-
parametric regression approaches, Ordinary Least Squares 
and Rank-Based Estimations, Returns to Scale, Results and 
Discussion, and Conclusion.
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METHODOLOGY 

The methodology describes the data and the parametric and 
non-parametric econometric techniques employed in the 
study. Econometric techniques such as ordinary least 
squares and rank-based non-parametric regression analysis 
and the Cobb-Douglas model are emphasized. 

Cobb-Douglas Production Function 

The Cobb-Douglas function is most commonly used in 
applied production economics. The Cobb-Douglas 
production function with N inputs is defined as: 

𝑦𝑦𝑦𝑦 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖
𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖𝑖

 [1] 

This function can be linearized by taking the (natural) 
logarithm on both sides: 

ln𝑦𝑦𝑦𝑦 = 𝛼𝛼𝛼𝛼0 + �𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖ln𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖𝑖

  [2] 

where 𝛼𝛼𝛼𝛼0 is equal to ln𝐴𝐴𝐴𝐴. 

Thus, the Cobb-Douglas production function is a linear 
model of the natural logarithm of both the dependent 
variable and the independent variable(s). In this study, 
estimation of the parameters of linearized Cobb-Douglas 
production function is done using Ordinary Least Squares 
(parametric) method and Rank-Based estimation (non-
parametric), and the results were compared. 

Parametric and Non-parametric Regression 
Approaches 

The goal of regression analysis is to estimate the 
relationship of one or more explanatory variables with a 
single dependent variable. This is done by evaluating the 
conditional expectation of the dependent variable given the 
explanatory variables, which can be expressed as: 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓0(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) + 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖  [3] 

𝑖𝑖𝑖𝑖 =  1, 2,⋯ ,𝑛𝑛𝑛𝑛, 

where 𝑖𝑖𝑖𝑖 =  1, 2,⋯ ,𝑛𝑛𝑛𝑛 denotes an observation of a subject, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 
is the response variable, and 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 is a 𝑘𝑘𝑘𝑘 × 1 vector of 
predictor variables, 𝑓𝑓𝑓𝑓0(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) is the expectation of 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 
conditional on 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 (the unknown regression function), and 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖 
is the error term. 

The traditional parametric approach to regression analysis is 
to assume that 𝑓𝑓𝑓𝑓0(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) belongs to a parametric family of 
functions: 𝑓𝑓𝑓𝑓0(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖|𝛽𝛽𝛽𝛽). So 𝑓𝑓𝑓𝑓0(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) is known to have up to a 

finite number of parameters. Most importantly, parametric 
approach to regression analysis requires the specification of 
a functional form for 𝑓𝑓𝑓𝑓0(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖).  

In non-parametric approach we do not assume a certain 
parametric functional form for 𝑓𝑓𝑓𝑓0(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) but is constructed 
according to information derived from the data. 
Nonparametric regression requires larger sample sizes than 
regression based on parametric models because the data 
must supply the model structure as well as the model 
estimates. 

 Ordinary Least Squares Estimation (OLS) 

In this approach, the most crucial decision is the 
specification of the functional form for 𝑓𝑓𝑓𝑓0(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖). It is assumed 
that 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 in the model is linearly related with 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖, and 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖 is 
independent and identically distributed (iid) with 𝐸𝐸𝐸𝐸(𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖) = 0 
and variance 𝜎𝜎𝜎𝜎2. Consider the following model: 

𝑓𝑓𝑓𝑓0(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖|𝛽𝛽𝛽𝛽) = 𝛽𝛽𝛽𝛽0 + 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝛽𝛽𝛽𝛽  [4] 

Thus a linear regression model is written as: 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽0 + 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝛽𝛽𝛽𝛽 + 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖  [5] 

where 𝛽𝛽𝛽𝛽0 is the intercept and 𝛽𝛽𝛽𝛽 is 𝑘𝑘𝑘𝑘 × 1 vector of 
parameters. For convenience, Equation 5 can be written 
as: 𝒚𝒚𝒚𝒚 = 𝑿𝑿𝑿𝑿𝑿𝑿𝑿𝑿 + 𝜺𝜺𝜺𝜺, where 𝑿𝑿𝑿𝑿 is 𝑝𝑝𝑝𝑝 × 1 vector of parameters, 
𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘 + 1, 𝒚𝒚𝒚𝒚, is 𝑛𝑛𝑛𝑛 × 1, 𝑿𝑿𝑿𝑿 is 𝑘𝑘𝑘𝑘 × 𝑝𝑝𝑝𝑝 design matrix, and 𝜺𝜺𝜺𝜺 is 
the 𝑛𝑛𝑛𝑛 × 1 vector of error terms.   

Under Gauss-Markov assumptions, the estimators of 𝑿𝑿𝑿𝑿 is 
the Best Linear Unbiased Estimators (BLUE), and can be 
estimated by using OLS. Using the OLS method of 
estimation 𝑿𝑿𝑿𝑿 can be estimated by 𝑿𝑿𝑿𝑿� which is given by the 
explicit formula: 

𝑿𝑿𝑿𝑿� = (𝑿𝑿𝑿𝑿′𝑿𝑿𝑿𝑿)−𝟏𝟏𝟏𝟏𝑿𝑿𝑿𝑿′𝒚𝒚𝒚𝒚  [6] 

The matrix (𝑿𝑿𝑿𝑿′𝑿𝑿𝑿𝑿)−𝟏𝟏𝟏𝟏𝑿𝑿𝑿𝑿′ is called the Moore-Penrose pseudo 
inverse matrix of X. After  𝑿𝑿𝑿𝑿  has been estimated, the fitted 
values (or predicted values) from the regression will be: 

𝒚𝒚𝒚𝒚� = 𝑿𝑿𝑿𝑿𝑿𝑿𝑿𝑿� = 𝑿𝑿𝑿𝑿(𝑿𝑿𝑿𝑿′𝑿𝑿𝑿𝑿)−𝟏𝟏𝟏𝟏𝑿𝑿𝑿𝑿′𝒚𝒚𝒚𝒚  [7] 

In the case of simple linear regression (one predictor 
variable) the model is written as: 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 + 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖,  [8] 

and 𝛼𝛼𝛼𝛼 and 𝛽𝛽𝛽𝛽 are estimated as: 

𝛽̂𝛽𝛽𝛽 =
𝑛𝑛𝑛𝑛∑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − ∑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ∑ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛 ∑ 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖2 − (∑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)2

 [9] 

𝛼𝛼𝛼𝛼� = 𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥𝑥  [10] 
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After we have estimated 𝛼𝛼𝛼𝛼 and 𝛽𝛽𝛽𝛽 the fitted values (or 
predicted values) from the regression will be: 
                 
𝑦𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛼𝛼𝛼 + 𝛽̂𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖                                                        [11] 

Notably, the OLS estimator is the minimizer of Euclidean 
distance between 𝒚𝒚𝒚𝒚 and 𝒚𝒚𝒚𝒚� = 𝑿𝑿𝑿𝑿𝑿𝑿𝑿𝑿�. 

It is assumed that the errors are independent and identically 
distributed (iid) with mean 0 and variance 𝜎𝜎𝜎𝜎2, thus 
𝜺𝜺𝜺𝜺 ~ 𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎2𝑰𝑰𝑰𝑰). Now since 𝒚𝒚𝒚𝒚 = 𝑿𝑿𝑿𝑿𝑿𝑿𝑿𝑿 + 𝜺𝜺𝜺𝜺, implies that 
𝒚𝒚𝒚𝒚 ~ 𝑁𝑁𝑁𝑁(𝑿𝑿𝑿𝑿𝑿𝑿𝑿𝑿,𝜎𝜎𝜎𝜎2𝑰𝑰𝑰𝑰), which is a compact description of the 
regression model. From this it can be found, using the fact 
that linear combinations of normally distributed values are 
also normal, that: 

𝑿𝑿𝑿𝑿 �~ 𝑁𝑁𝑁𝑁(𝑿𝑿𝑿𝑿, (𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)−𝟏𝟏𝟏𝟏𝜎𝜎𝜎𝜎2) 

Inference on all the predictor variables can be tested by 
testing: 

𝐻𝐻𝐻𝐻0: 𝛽𝛽𝛽𝛽1 = 𝛽𝛽𝛽𝛽2 ⋯ = 𝛽𝛽𝛽𝛽𝑘𝑘𝑘𝑘 = 0 

𝐻𝐻𝐻𝐻0 is to be rejected if 

𝐹𝐹𝐹𝐹 =
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)/(𝑝𝑝𝑝𝑝 𝑝 1)

𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇/(𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛 )
> 𝐹𝐹𝐹𝐹1−𝛼𝛼𝛼𝛼,𝑝𝑝𝑝𝑝𝑝𝑝,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = (𝒚𝒚𝒚𝒚 𝒚 𝒚𝒚𝒚𝒚�)𝑇𝑇𝑇𝑇(𝒚𝒚𝒚𝒚 𝒚 𝒚𝒚𝒚𝒚�) which is sometimes known 
as sum of squares corrected for the mean, and 𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = (𝒚𝒚𝒚𝒚 𝒚
𝑿𝑿𝑿𝑿𝑿𝑿𝑿𝑿 � )𝑇𝑇𝑇𝑇(𝒚𝒚𝒚𝒚 𝒚𝒚𝒚𝒚𝒚 𝑿𝑿𝑿𝑿 � ) which is the residual sum of squares. 

The approximate (1 − 𝛼𝛼𝛼𝛼) × 100% confidence interval for 
𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗 is  

𝛽̂𝛽𝛽𝛽𝑗𝑗𝑗𝑗 ± 𝑡𝑡𝑡𝑡1−𝛼𝛼𝛼𝛼 𝛼⁄ ,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛se�𝛽̂𝛽𝛽𝛽𝑗𝑗𝑗𝑗� 

where se�𝛽̂𝛽𝛽𝛽𝑗𝑗𝑗𝑗� = 𝜎𝜎𝜎𝜎𝜎�(𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗−𝟏𝟏𝟏𝟏, and (𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗−𝟏𝟏𝟏𝟏 is the 𝑗𝑗𝑗𝑗th 

diagonal element of (𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)−𝟏𝟏𝟏𝟏. 

 Rank-Based Estimation 

In contrast, the non-parametric approach to regression 
analysis does not require any presumptions for the 
functional form of 𝑓𝑓𝑓𝑓0(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖). As with OLS, the goal of rank-
based estimation is to estimate the vector of parameters, 𝛽𝛽𝛽𝛽, 
of a linear model in Equation 5. For convenience, Equation 
5 can be written in matrix notation as: 

𝒚𝒚𝒚𝒚 = 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝑿𝑿𝑿𝑿𝑿𝑿𝑿𝑿 + 𝜺𝜺𝜺𝜺                                                [12] 

where 𝒚𝒚𝒚𝒚 is the 𝑛𝑛𝑛𝑛 × 1 vector of responses, 𝑿𝑿𝑿𝑿 is the 𝑛𝑛𝑛𝑛 × 𝑘𝑘𝑘𝑘 
design matrix, 𝑿𝑿𝑿𝑿 is 𝑘𝑘𝑘𝑘 × 1 vector of parameters, and 𝜺𝜺𝜺𝜺 is the 
𝑛𝑛𝑛𝑛 × 1 vector of error terms. The only assumption on the 
error term is that it is continuous; in that sense the model is 
general. The geometry of the rank-based procedures is the 
same as OLS, except that instead of the Euclidean distance, 

the Jaeckel’s dispersion function is used which is based on a 
pseudo-norm ‖∙‖𝜑𝜑𝜑𝜑. The Jaeckel’s dispersion function is 
given by: 

𝐷𝐷𝐷𝐷(𝑿𝑿𝑿𝑿) = ‖𝒚𝒚𝒚𝒚 𝒚 𝑿𝑿𝑿𝑿𝑿𝑿𝑿𝑿‖𝜑𝜑𝜑𝜑                                           [13] 

where ‖∙‖𝜑𝜑𝜑𝜑 is a pseudo-norm defined as: 

‖𝒖𝒖𝒖𝒖‖𝜑𝜑𝜑𝜑 = �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖)�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖

 ,                        𝑢𝑢𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑛𝑛𝑛𝑛 , 

where the scores are generated as 𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖) = 𝜑𝜑𝜑𝜑 𝜑 𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛

� for a non-

decreasing square-integrable function 𝜑𝜑𝜑𝜑(𝑢𝑢𝑢𝑢), defined on the 
interval (0, 1), and 𝑅𝑅𝑅𝑅(𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖) is the rank. Assume without loss 
of generality that it is standardized, so that ∫𝜑𝜑𝜑𝜑(𝑢𝑢𝑢𝑢)𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢 = 0 
and ∫𝜑𝜑𝜑𝜑2(𝑢𝑢𝑢𝑢)𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢 = 1. Two of the most popular score 
functions are the Wilcoxon �𝜑𝜑𝜑𝜑(𝑢𝑢𝑢𝑢) = √12[𝑢𝑢𝑢𝑢 𝑢 (1 2⁄ )]� and 
the 𝐿𝐿𝐿𝐿1 (𝜑𝜑𝜑𝜑(𝑢𝑢𝑢𝑢) = sgn[𝑢𝑢𝑢𝑢 𝑢 (1 2⁄ )]). Because the scores sum 
to zero and the ranks are invariant to a constant shift, the 
intercept cannot be estimated using the norm. Instead it is 
usually estimated as the median of the residuals. That is, 
𝛼𝛼𝛼𝛼𝛼𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 = med�𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝛽̂𝛽𝛽𝛽𝜑𝜑𝜑𝜑�, where 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇 is the 𝑖𝑖𝑖𝑖th row of 𝑿𝑿𝑿𝑿.  

The rank-based estimator of 𝑿𝑿𝑿𝑿 is defined as: 

𝑿𝑿𝑿𝑿�𝜑𝜑𝜑𝜑 = Argmin‖𝒚𝒚𝒚𝒚 𝒚 𝑿𝑿𝑿𝑿𝑿𝑿𝑿𝑿‖𝜑𝜑𝜑𝜑                                [14] 

This estimator is a highly efficient estimator which is robust 
in the Y-space. A weighted version can attain 50% 
breakdown in the X-space at the expense of a loss in 
efficiency; see Chang et al. (1999). 

𝑿𝑿𝑿𝑿�𝜑𝜑𝜑𝜑 is the Hodges-Lehmann estimate (i.e., the median of all 
pairwise differences between the samples) if the Wilcoxon 
scores is used. Let 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) denote the probability density 
function of 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖. Then, under regularity conditions: 

�𝛼𝛼𝛼𝛼�𝑠𝑠𝑠𝑠𝑿𝑿𝑿𝑿�𝜑𝜑𝜑𝜑� is approximately 

𝑁𝑁𝑁𝑁𝑘𝑘𝑘𝑘𝑘𝑘 ��
𝛼𝛼𝛼𝛼
𝑿𝑿𝑿𝑿� , �

𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 −𝜏𝜏𝜏𝜏𝜑𝜑𝜑𝜑2𝑥𝑥𝑥𝑥𝑥𝑇𝑇𝑇𝑇(𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)−𝟏𝟏𝟏𝟏

𝜏𝜏𝜏𝜏𝜑𝜑𝜑𝜑2 (𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)−𝟏𝟏𝟏𝟏𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝜑𝜑𝜑𝜑2 (𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)−𝟏𝟏𝟏𝟏
�� 

where 𝛼𝛼𝛼𝛼𝛼𝑠𝑠𝑠𝑠 = 𝛼𝛼𝛼𝛼𝛼𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 − 𝑥𝑥𝑥𝑥𝑥𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿�𝜑𝜑𝜑𝜑,  𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛−1𝜏𝜏𝜏𝜏𝑠𝑠𝑠𝑠2 + 𝜏𝜏𝜏𝜏𝜑𝜑𝜑𝜑2𝑥𝑥𝑥𝑥𝑥𝑇𝑇𝑇𝑇(𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)−𝟏𝟏𝟏𝟏𝑥𝑥𝑥𝑥𝑥, 
𝜏𝜏𝜏𝜏𝑠𝑠𝑠𝑠 = [2𝑓𝑓𝑓𝑓(0)]−1, 

 𝜏𝜏𝜏𝜏𝜑𝜑𝜑𝜑 = [∫𝜑𝜑𝜑𝜑(𝑢𝑢𝑢𝑢)𝜑𝜑𝜑𝜑𝑓𝑓𝑓𝑓(𝑢𝑢𝑢𝑢)𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢]−1, and 𝜑𝜑𝜑𝜑𝑓𝑓𝑓𝑓(𝑢𝑢𝑢𝑢) = −𝑓𝑓𝑓𝑓𝑓(𝐹𝐹𝐹𝐹−1(𝑢𝑢𝑢𝑢))/
𝑓𝑓𝑓𝑓(𝐹𝐹𝐹𝐹−1(𝑢𝑢𝑢𝑢)).  

Depending on knowledge of the error probability density 
function 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡), appropriate scores can result in 
asymptotically efficient estimates. This result can be 
summarize as follows: 

𝑿𝑿𝑿𝑿�𝜑𝜑𝜑𝜑~𝑁𝑁𝑁𝑁𝑁𝑿𝑿𝑿𝑿, 𝜏𝜏𝜏𝜏𝜑𝜑𝜑𝜑2 (𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)−𝟏𝟏𝟏𝟏� 
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SAMPLE SIZE AND DATA ANALYSIS

In this study, simple random sampling technique was used 
to select 306 maize farmers from the Ejura Sekyedumase 
District. The analytical tools used for this study were 
descriptive statistics and parametric and non-parametric 
regression analyses. The dependent variable of the production 
function is the farm’s output measured as total maize yield. 
The independent variables used in the regression analyses were 
six: labour, land, equipment, agrochemical, fertilizer, and 
seeds. The R programming software was used to analyse the 
data. The Cobb-Douglas production function was estimated 
using the ordinary least squares estimation and the rank-based 
estimation. The R packages Rfit was used for the rank-based 
estimation. 

RESULTS

Descriptive statistics of the regression variables are presented 
in Table 1. Findings from Table 1 indicate that on average a 
yield of 7396.37kg was obtained. This output was obtained by 
combining 170.65 person-days of labour, 16.06 acres of land, 
15.82 litres of agrochemicals, 140.98 kilogram of fertiliser, 
5.03 kilogram of seeds and GHS15.68 of equipment. 

Table 1: Descriptive Statistics of Regression Variables

Variable Unit Mini-
mum Maximum Mean Std. Dev

Output Kg 480.00 52200.00 7396.37 6919.31

Labour P-D 28.00 469.00 170.65 75.91

Land Acres 2.00 60.00 16.06 10.60

Equipment GHS 2.40 72.00 15.68 14.04

Agrochem-
icals  Lit. 3.00 63.00 15.82 10.65

Fertiliser Kg 25.00 300.00 140.98 43.33

Seed Kg 3.00 9.00 5.03 1.12

OLS estimation results of the Cobb-Douglas regression 
model presented in Table 2, reveals a significant and positive 
relationship between land and equipment as explanatory 
variables and maize yield as the dependent variable. There 
is also a significant but negative relationship between the 
use of agrochemicals (weedicides, pesticides, fungicide and 
insecticide) as an explanatory variable and maize yield as 
dependent variable. There is also a negative relationship 
between seed as explanatory variable and maize yield 
as dependent variable. However, this relationship is not 
significant. 

Table 2: Ordinary Least Square Estimates

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.25876 0.32104 16.380 2e-16 ***

log(Labour) 0.05309 0.04625 1.148 0.25194

log(Land) 1.25648 0.06183 20.321 2e-16 ***

log(Equipment) 0.06933 0.02410 2.876 0.00431 **

log(Agrochemicals) -0.13983 0.06493 -2.154 0.03207 *

log(Fertilizer) 0.05092 0.05449 0.935 0.35076

log(Seed) -0.15117 0.07853 -1.925 0.05518 

F-test Sig.

319.3 2.2e-16***

R-squared

Multiple R-squared 0.865

Adjusted R-squared 0.8623

Sig. codes: ‘***’p< 0.001, ‘**’p< 0.01, ‘*’p< 0.05

An estimate of 𝜏𝜏𝜏𝜏𝜑𝜑𝜑𝜑 is necessary to conduct inference. Denote 
this estimator by 𝜏𝜏𝜏𝜏𝜏𝜑𝜑𝜑𝜑. Then Wald tests and confidence 
intervals can be calculated. Let se�𝛽̂𝛽𝛽𝛽𝑗𝑗𝑗𝑗� = 𝜏𝜏𝜏𝜏𝜏𝜑𝜑𝜑𝜑(𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗−𝟏𝟏𝟏𝟏, 
where (𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗−𝟏𝟏𝟏𝟏 is the 𝑗𝑗𝑗𝑗th diagonal element of (𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)−𝟏𝟏𝟏𝟏. 
Then an approximate (1 − 𝛼𝛼𝛼𝛼) × 100% confidence interval 
for 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗 is  

𝛽̂𝛽𝛽𝛽𝑗𝑗𝑗𝑗 ± 𝑡𝑡𝑡𝑡1−𝛼𝛼𝛼𝛼 𝛼⁄ ,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛se�𝛽̂𝛽𝛽𝛽𝑗𝑗𝑗𝑗�. 

A Wald test of the general linear hypothesis 

𝐻𝐻𝐻𝐻0:𝑴𝑴𝑴𝑴𝑿𝑿𝑿𝑿 = 𝟎𝟎𝟎𝟎 versus 

𝐻𝐻𝐻𝐻1:𝑴𝑴𝑴𝑴𝑿𝑿𝑿𝑿 ≠ 𝟎𝟎𝟎𝟎 

is to reject 𝐻𝐻𝐻𝐻0 if 

(𝑴𝑴𝑴𝑴𝑿𝑿𝑿𝑿�𝜑𝜑𝜑𝜑)𝑇𝑇𝑇𝑇[𝑴𝑴𝑴𝑴(𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)−1𝑴𝑴𝑴𝑴𝑇𝑇𝑇𝑇]−𝟏𝟏𝟏𝟏(𝑴𝑴𝑴𝑴𝑿𝑿𝑿𝑿�)/𝑞𝑞𝑞𝑞
𝜏𝜏𝜏𝜏𝜑𝜑𝜑𝜑2

> 𝐹𝐹𝐹𝐹1−𝛼𝛼𝛼𝛼,𝑞𝑞𝑞𝑞,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, where 𝑞𝑞𝑞𝑞 =

dim (𝑴𝑴𝑴𝑴). 

Returns to Scale (RTS) 

From the Cobb-Douglas production function, the output 
elasticities with respect to the factors of production (inputs) 
are equal to the corresponding coefficients of the Cobb-
Douglas regression model. Based on the farmers’ output 
elasticities, it would be known whether the farmers’ 
exhibits constant returns to scale, decreasing returns to 
scale or increasing returns to scale and its implication to the 
farmers. The returns to scale is the summation of all the 
output elasticities of the factors of production. It is specified 
mathematically as: 

𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �𝜖𝜖𝜖𝜖𝑖𝑖𝑖𝑖

𝑘𝑘𝑘𝑘

𝑖𝑖𝑖𝑖𝑖𝑖

= �𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

𝑘𝑘𝑘𝑘

𝑖𝑖𝑖𝑖𝑖𝑖

                                      [15] 

where 𝜖𝜖𝜖𝜖𝑖𝑖𝑖𝑖 is the output elasticities with respect to the ith 
input, and 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 is the coefficient of the ith input of the Cobb-
Douglas regression model. 
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Similarly, rank-based estimation results of the Cobb-
Douglas regression model presented in Table 3, shows 
a significant and positive relationship between land and 
equipment as explanatory variables and maize yield as the 
dependent variable. Additionally, there is also a significant 
but negative relationship between the use of agrochemicals 
(weedicides, pesticides, fungicide and insecticide) and seed as 
explanatory variables and maize yield as dependent variable. 

Table 3: Rank-Based Estimates

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.308942 0.331579 16.0111 2e-16 ***

log(Labour) 0.052293 0.047737 1.0954 0.27421

log(Land) 1.271812 0.063816 19.9292 2e-16 ***

log(Equipment) 0.060810 0.024877 2.4444 0.01509 *

log(Agrochemicals) -0.136052 0.067015 -2.0302 0.04322 *

log(Fertilizer) 0.049349 0.056235 0.8776 0.38089

log(Seed) -0.181732 0.081055 -2.2421 0.02569 *

Reduction in  
Dispersion Test Sig.

163.696 0.000***

R-squared

Multiple R-squared 
(Robust) 0.7666207

Sig. codes: ‘***’p< 0.001, ‘*’p< 0.05

Table 4 presents the elasticities and returns to scale for 
the OLS estimation and the Rank-based estimation. On the 
basis of the rank-based Cobb Douglas model, inputs used 
in producing maize (i.e. labour, equipment, agrochemical, 
fertilizer and seed) were all inelastic with the exception of 
land. This was also the case of the OLS estimation. 

Table 4: Elasticity of Production and Returns to Scale (RTS)

OLS Estimation Rank-Based Estimation

Variable Elasticity RTS Elasticity RTS

Labour 0.05309 1.14 0.052293 1.12

Land 1.25648 1.271812

Equipment 0.06933 0.060810

Agrochemi-
cal -0.13983 -0.136052

Fertilizer 0.05092 0.049349

Seed -0.15117 -0.181732

DISCUSSION

The maximum and minimum yield obtained in Table 1 
indicates that there is a large variation in maize output among 
farmers in the District. The wide variation in output could 
be attributed to differences in technical efficiency levels of 
farmers.

In the OLS estimation results of the Cobb-Douglas 
regression model presented in Table 2, the significant and 
positive relationship between land and equipment as explanatory 

variables and maize yield as the dependent variable suggests 
that an increase in each of these explanatory variables will 
lead to an increase in the output of maize. The significant 
but negative relationship between the use of agrochemicals 
(weedicides, pesticides, fungicide and insecticide) as an 
explanatory variable and maize yield as dependent variable 
suggests that the output level of maize would decline as the 
use of agrochemicals increased.  The negative relationship 
may result from the wrong application of the agrochemicals. 
For example excessive use of agrochemicals could lead to a 
decline in yield.  There is also a negative relationship between 
seed as explanatory variable and maize yield as dependent 
variable. However, this relationship is not significant. 

The significant and positive relationship between land and 
equipment as explanatory variables and maize yield as the 
dependent variable in the estimation results of the Rank-based 
Cobb-Douglas regression suggests that an increase in each 
of these variables will lead to an increase in the output of 
maize. These results are consistent with the OLS estimation. 
Similarly, the significant but negative relationship between the 
use of agrochemicals (weedicides, pesticides, fungicide and 
insecticide) and seed as explanatory variables and maize yield 
as dependent variable in the Rank-based regression suggests 
that the output level of maize would decline as the use of 
agrochemicals and seed are increased. For example excessive 
use of agrochemicals and seeds could lead to a decline in 
yield.  In effect if the seeds used by farmers are higher than 
the recommended seed rate, yield will decline. This may lead 
to overcrowding which makes seedlings compete for nutrients, 
space and air. This result is consistent with the studies by 
Battese and Hassan (1999).

A comparison of the estimation result from the Cobb-
Douglas model using the least squares method and the rank-
based regression approach indicates that the estimates obtained 
in the alternative methods are similar. These results are 
consistent with Kloke and Mckean (2015) who demonstrated 
that the rank-based regression output was similar to that of 
the linear model and can be interpreted in the same way.

The productivity level of the farmers were examined by 
investigating their output elasticities and returns to scale. If 
the farmers increase input (labour, equipment, agrochemicals, 
fertilizer and seed) by one percent output changes by less than 
one percent whilst if farmers increase input (land) by one 
percent output increases by more than one percent. Noticeably, 
land which is positive and significantly related to output had 
the highest elasticity. This suggest that increasing land used in 
maize production will lead to increases in maize output. The 
importance of land in production is also noted by Rahman, 
Wiboonpongse, Sriboonchitta and Chaovanapoonphol (2009). 
On the basis of the rank based estimation, a one percentage 
increase in the use of agrochemicals and seed reduces output 
by 0.13 and 0.18 percent respectively. These reduction in 
output may be due to incorrect application of inputs such as 
seeds and agrochemicals. 

Noticeably, both the OLS and the rank based estimation 
techniques suggest that the maize farmers were exhibiting 
increasing returns to scale. Thus output grows more than 
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proportionately with any increase in input. This evidence is 
consistent with Wu, Devadoss and Lu (2003).   This means 
the farmers could increase output by using more of the inputs 
(e.g. land, equipment and fertilizer).

CONCLUSION  

This paper proposes a non-parametric rank-based estimation 
method to modelling the Cobb-Douglas production function 
as an alternative to the parametric ordinary least squares 
estimation approach. A comparison of the result from the 
Cobb-Douglas model using the least squares method and the 
rank-based regression approach indicates that the estimates 
obtained in the alternative methods are similar. 

On the basis of rank-based Cobb-Douglas estimation, farm 
inputs such as land and equipment had a significant positive 
effect on maize output, whilst agrochemicals and seed had a 
significant negative effect on output. Furthermore, the rank-
based analysis suggest that the farmers were operating at 
an increasing returns to scale. In summary, this paper has 
demonstrated that the rank-based non-parametric regression 
offers an alternative and a useful approach to estimating 
production functions.
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