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INFO ABSTRACT 
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The paper empirically elaborates and tests a novel measurement 

model called a complex model of network structure exploration 

(CMNSE). This new measurement model gauges simultaneously, 

on one hand, structural features of nodes with degree distribution, 

on the other hand, the spatial characteristics of edges of a real 

network are investigated with quadrat analysis. The topology of 

the newest form of an economic network called coopetitive 

network is tested by CMNSE. Empirical findings reveal that this 

coopetitive network does not have scale-free property since its 

degree exponent belongs to the anomalous regime. Moreover, the 

spatial position of a hub and nodes can be pinpointed with 

CMNSE highlighting that nodes are clustered significantly in the 

periphery of the networked space, but the hub is localized in the 

center of the network.  
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Kulcsszavak 

hálózati struktúra, 

skálafüggetlenség, kvadrát 

analízis, valódi hálózatok 

Ebben a tanulmányban kidolgozunk és empirikusan tesztelünk 

egy újszerű hálózati mérési modellt, amit a hálózati struktúra 

komplex mérési modelljének (CMNSE) neveztünk el. Ez egyrészt 

méri a csúcspontok strukturális jellemzőit fokszámeloszlással, 

másrészt vizsgálja az élek térbeli vonásait kvadrátanalízissel. A 

gazdasági hálózatok legújabb típusát, egy magyar koopetitív 

hálózat topológiáját kvantifikáljuk CMNSE modellel. Az 

eredmények szerint ennek az üzleti hálózatnak nincs 

skálafüggetlen tulajdonsága, mivel fokszámkitevője rendkívül 

alacsony. Továbbá, a hálózat térbeli elemzésével megállapítható, 

hogy a gócpont a hálózat által lefedett tér centrumában található, 

míg a csúcspontok a hálózat peremén sűrűsödnek. 

mailto:jona.gyorgy@etk.unideb.hu


158 Acta Medicinae et Sociologica Vol.14. No.36. 2023 
 

The paper was supported by the János Bólyai Research Scholarship of the 

Hungarian Academy of Sciences. 

Introduction 

The paper develops and empirically tests a measurement model, referred to as 

a complex model of network structure exploration (CMNSE), analyzing the 

structure of a real network in a multifaceted way. Obviously, the network 

topology must be scrutinized to understand functions, interior features, 

robustness, vulnerability, accomplishment, effects, and externalities of 

complex systems (Barabási 2016, Chagnon et al 2016, Newman 2000). Only 

the architecture of real networks is examined by CMNSE. The notion of real 

network refers to a type of network wherein vertices are not randomly linked 

to each other and that can be found in the real world as well; the real networks 

cannot be described with Erdős-Rényi random graph theory (Bollás 2001). In 

this respect, real networks might be regarded as non-random empirical 

networks. Furthermore, the notion of network structure here indicates that 

nodes and edges are organized and arranged in the networked space.  

The paper is constructed as follows. Section 2 reviews the theoretical 

underpinnings and the most relevant empirical results of network structure 

investigations. After every detail of CMNSE is demonstrated in the Method 

section, the model is tested empirically network of wine shops (NWS) in 

Budapest (capital of Hungary) in the Results section. Finally, the Conclusion 

section summarizes the main points of CMNSE, empirical findings, and future 

research directions as well. 
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Theoretical background and empirical overviews  

Network structure has been studied regularly by degree distribution (i.e., how 

many linkages belong to vertices in a certain network). For example, the 

topology of biological (Barabási 2016, Barabási-Oltvai 2005, Kveler et al. 

2018, Santolini-Barabási 2018, Shen et al 2015), medical (Barabási 2016, 

Barabási-Oltvai 2005, Csermely – Korcsmáros – Kiss 2013b), ecological 

(Melián et al. 2009, Palla et al. 2005, Poisot-Gravel 2014), societal (Barabási 

et al. 2002, Glowacki et al. 2016, Jackson 2016, Kossinets-Watts 2006, Palla 

et al. 2005), economic (Anand-Craig-Goetz 2014, Goyal 2007, Jackson 2016, 

Knieps 2015, Zhang-Du 2017) and informational (Jeong-Albert-Barabási 

1999, Gleeson et al 2016, Stopczynski-Pentland-Lehmann 2018) networks 

have so far been characterized with degree distribution. Csermely et al. (2013a, 

2013b) classify accurately types of structural properties of linkages. Besides, 

some multidimensional studies, however, combine several network indices to 

measure network schemes. Such as, Uchida-Shirayama (2008) inspects a 

network system by employing the same time degree distribution, clustering 

coefficients, short average path length, and degree correlation. Hagberg-Swart-

Schult (2008) also integrates network diameter, betweenness centrality, 

shortest path, degree distribution, and clustering coefficient to describe the 

properties of a network structure. Chagnon et al. (2016) explore ecological 

network topology by synthesizing six network metrics: C-score index, 

nestedness, betweenness centrality, modularity, power-law fit to degree 

distribution, and interaction strength asymmetry. Russel et al. (2017) use 

simultaneously closeness centrality, betweenness centrality, and clustering 

coefficient to design the network structure of children’s societal environment 

engaged in post-traumatic stress. Apparently, empirical network 

measurements have so far usually applied degree distribution and hardly ever 

multilayer approaches.  

Notwithstanding, a few empirical inquiries have so far analyzed structural 

features of node structure applying heuristic measure-based methods or 

probabilistic inference-based model (Chai et al 2013, Chen et al 2016, Daqing 

et al 2011, Duan et al. 2013). Obviously, these do not explore the structural 

traits of edges. Structural characteristics of vertices and edges have so far been 

scrutinized separately and not together.  

Of course, the above-mentioned methods are adequate and useful, but both 

were used separately in studies thus entirely network topology could not be 
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described. Simply put, since a real network subsumes vertices and edges, 

structural and spatial traits of both must therefore be examined simultaneously 

to map network architecture. This complex analytical approach cannot be 

omitted in scientific research. 

Simply put,  

the structure of a real network =  

structural features of edges  

+  

structural features of nodes. 

In this paper, CMNSE is developed to perceive and quantify simultaneously 

spatial and structural properties of vertices and links. The next section 

describes and explains the main features of the CMNSE.   

The network model 

Two components of CMNSE can be distinguished. The first one inspects 

structural features of links by degree distribution. The second one dissects the 

structural characteristics of nodes by quadrat analysis. Apparently, a real 

network emerges as a complex system thus it must be studied in a complex 

way. Firstly, the paper concentrates on how structural properties of linkages 

are measured. 

Measuring structural features of edges 

A real network (N) embraces a finite, nonempty set 𝑉 = {𝑣𝑖} of vertices (V) 

and a finite, nonempty set 𝐸 = {𝑒𝑗} of edges (E). The number of vertices in V 

is defined as i, and the number of edges in E is referred to as j. Since CMNSE 

is built on previous scientific inquiries, the structural feature of edges is gauged 

consequently with degree distribution. Degree distribution 𝑝𝑘 can be estimated 

well with the maximum likelihood technique: 

𝑝𝑘~𝐶𝑏
−𝛾 

(1) 

where C is a constant, b means a variable and  – 𝛾 expresses degree exponent 

(Mocnik 2018). According to the discrete formalism of degree distribution, 

constant C is determined by the normalization condition 
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∑𝑝𝑘 = 1

∞

𝑖=0

 

(2) 

Applying equation (1) we obtain  

𝐶∑𝑘−𝛾 = 1

∞

𝑖=0

 

(3) 

hence  

𝐶 =
1

∑ 𝑘−𝛾∞
𝑖=1

=
1

𝜉(𝛾)
 

(4) 

where 𝜉(𝛾) appears as the Riemann-zeta function. For k>0 the discrete power-

law degree distribution possesses the form  

𝑝𝑘 =
𝑘−𝛾

𝜉(𝛾)
 

(5) 

The value of – 𝛾 shows structural characteristics of network connections, the 

CMNSE, as a result, concentrates on the value of the degree exponent 

(Barabási 2016, Goh-Kahng-Kim 2001).  

Measuring structural features of nodes 

Gauging of structural patterns of nodes might be more difficult than degree 

distribution. The starting point of CMNSE is that every real network possesses 

spatial extension, size, form, and dimension. For example, the geographical 

distances among vertices are relatively long in a motorway network 

(Adamatzky et al. 2017), networks for commodities delivery (Barthélemy 

2017), river networks (Rodrigue-Ronaldo 1997), power grid networks (Kim et 

al. 2018), and street networks (Gil 2016) as well. Shorter physical distances 

can be found regularly in social networks (Barthélemy 2011, Latour 2011) or 

networks of small-and-medium-sized enterprises (Balister et al. 2018, 

Törnroos et al. 2017). Nevertheless, the physical distances among vertices can 

be measured in centimeters or millimeters in underground hyphal networks 
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(Friese-Allen 1991), three-dimensional integrated circuits (Wong 2007), 

neurons’ networks in the brain (Dehmamy-Milanlouei-Barabási 2018), 

circulatory network systems (West-Brown 2003) or other cell networks 

(Gartner-Prescher-Lavis 2017) as well. Obviously, all real networks have 

spatial extension irrespective of their sizes, ages, or types.  

Spatial characteristics of real networks permit the description and capture of 

structural traits of vertices, the spatial position of hubs and nodes, and the 

physical interplay among them (Mocnik-Frank 2015). By considering the 

spatial distribution of vertices, we can answer the question of where network 

agents are clustering or thinning out in the networked space. Nodes of spatial 

distribution are measured with quadrat analysis (i.e., it focuses on spatial 

patterns and allocation of nodes by comparing the number of vertices among 

the cells; the sizes of a grid have no mathematical rules or theorems, it is 

defined always by the researcher) (Brinkhoff – Kresse 2012, Jinghu-Junfeng-

Yibo 2015, Reginald 1977). The spatial distribution of nodes is analyzed 

empirically by quadrat analysis because it is regarded as a useful, simple, 

elegant, and reliable method (Robinson et al 2016). 

At this point, the networked space must be defined and delimited 

geographically. Firstly, the network map has to be drawn in which a vertex 

depicts the geographical location of a business entity and a bond between nodes 

presents partnership (Figure 3). The outermost vertices (i.e., those nodes that 

can be found topologically the outermost of the network) are connected to each 

other (see green dash line in Figure 3) obtaining the physical boundary of the 

networked space.  

Subsequently, grids are superimposed over the spatial layout of the networked 

space and the number of events falling in each grid area is counted. The results 

of quadrat analysis are characterized by the variance-to-mean ratio (VMR) test 

(O’Sullivan-David 2010, Robinson et al 2016). To implement VMR, the mean 

grid count (𝜇) must be calculated: 

𝜇 =
𝑉

𝑥
 

(6) 

where x expresses the number of quadrats.  

After this, 𝑥(𝑎 − 𝜇)2 is computed where a means the number of events. The 

variance (𝑠2) is obtained:  
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𝑠2 =
1

𝑉
∑(𝑎 − 𝜇)2
𝑣

𝑖=1

 

(7) 

and 

𝑉𝑀𝑅 =
𝑠2

𝜇
 

(8) 

If VMR<1, the variance is low, regularly is zero, and the distribution of nodes 

is uniform. When the spatial allocation of points is random/stochastic (i.e., 

follows the Poisson distribution pattern) then VMR=1, namely the mean and 

variance are equal. If VMR>1 (variance is greater than mean), the distribution 

is clustered. In a nutshell, point distribution could be clustered (attracting), 

stochastic/random (Poisson), and uniform (repelling) (Robinson et al 2016). 

To summarize, the structural features of edges are gauged with degree 

distribution, and the structural features of nodes are measured by quadrat 

analysis. Firstly, in the CMNSE, degree distribution should be calculated to 

obtain structural traits of links. After this, the structural attributes of edges must 

be defined. To implement it, the spatial boundaries of a real network must be 

delimited. Later, quadrats are superimposed over the map of networked space 

and spatial patterns of points thus are analyzed with VMR. CMNSE 

synthesizes results of degree distribution and quadrat analysis to study network 

structure in a complex way. 

In the next section, a structure of a new type of economic network will be 

examined empirically by testing CMNSE. 

Results and discussion 

General features of a new form of economic network 

In this section, the topology of a totally new type of economic network, called 

coopetitive network (i.e., dynamic inter-firm relationship in which rivals 

compete and collaborate with each other simultaneously in some business 

fields to realize higher profit rate), is studied with CMNSE. More specifically, 

in 2011 some owners of wine shops in Budapest constructed informally a 

coopetitive network in Budapest to reduce purchase prices together and 
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increase their complex accomplishments; the spatial layout of a network of 

wine shops (NWS) is depicted in Figure 1.   

Figure 1. Spatial layout of coopetitive network of wine shops in Budapest 

 

NWS solely includes micro-enterprises and small and medium-sized 

entrepreneurs. Coopeting partners cooperate in only two business activities, 

namely the mutual purchase and transport of bottles of wines. Network agents 

purchase in a bulk from wineries to receive discounts and transport products 

together to decrease expenditures and increase, as a result, profit. However, 

rivals compete in several business fields such as for more consumers, well-

qualified employers, innovations, relational capital, recipes for special foods, 

and reliable accountants, to name just a few. Similar coopetitive networks may 

be found in Eastern European regions as well (Jóna-Tóth 2017, Jóna 2018). 

Nevertheless, NWS has been operating approximately for 5 years, these days 

it went out of the local business life.  

In NWS a node demonstrates the physical location of a firm, and an edge 

means undirected and unweighted coopetitive interactions (emails, phone 
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communications, face-to-face conversations, etc.) among rivals. Coopetitive 

activities (mutual transportation and purchasing) are planned, managed, and 

coordinated by emails hence the length of the linkage between rivals is defined 

as the Euclidean distance (i.e., it refers to the length of the line segment among 

actors). The Euclidian distance based on the Pythagorean theorem is obtained 

in a simple way in two dimensions: 

𝑒𝑑(𝑝, 𝑞) = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 

(9) 

where ed(p,q) means Euclidian distance between nodes, p and q pinpoint the 

positions of nodes in polar coordinate (Barthélemy 2011, O’Sullivan 2014). In 

the practice, every length of linkage is measured separately, expressed in 

kilometer and the longest is the spatial diameter of the network. 

In brief, NWS is referred to as a bottom-up real network wherein loops and 

isolated nodes (𝑘𝑖 = 0) cannot be found (𝑘𝑖 expresses the node degree). NWS 

functionalizes as an informal network without any formal contracts among 

actors. 

The sociological snowball method was employed to map the whole network 

and to muster the raw network dataset (Heckathorn – Cameron 2017).   

Testing complex model of network structure exploration (CMNSE) 

Firstly, the degree distribution of NWS is measured. After this, the results of 

quadrat analysis are characterized by VMR. Finally, both findings are 

interpreted together to describe the multilevel way of the topology of a real 

network. 
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Degree distribution of NWS 

NWS encompasses 41 vertices (V=41) and 55 undirected, unweighted edges 

(E=55): 

𝐸 =
1

2
∑𝑘𝑖

𝑉

𝑖=1

 

(10) 

The average degree of NWS (〈𝑘〉 =
2𝐸

𝑉
) is 2.68 meaning that a network player 

interacts with more than two enterprises. Notwithstanding, if results of degree 

distribution are analyzed (Figure 2), a hub, the most connected vertex, can be 

recognized with 40 links. More precisely, a hub (focal firm) ties to every node, 

but more than 53% of vertices possess only one connection (𝑘 ≪ 〈𝑘〉 ≪ 𝑘ℎ𝑢𝑏); 

NWS is regarded as a sparse network. Such a centralized network has been 

formed because rivals loathe each other because of their harmful earlier 

business experiences. Coopeting partners hardly ever interact with each other, 

they do not trust each other but they believe in the hub that mediates among 

rivals and fills structural holes (i.e., it is a gap in the network among 

disconnected nodes. The hole is bridged by the hub to integrate the whole 

network) in NWS as well (Jóna-Tóth 2017, Jóna 2018). 

Figure 2. Degree distribution of network of wine shops 

 

Resource: my calculation. 

Barabási-Ravasz-Vicsek (2001) and Barabási (2016) suggest that regularly 

real networks have power-law degree distribution. Notwithstanding, according 
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to Figure 2, NWS does not have scale-free network property since degree 

exponent 𝛾 = 0,707 meaning belonging to the anomalous regime (anomalous 

regime: 𝛾 ≤ 2; scale-free regime: 2 < 𝛾 < 3; random network regime: 𝛾 > 3) 

(Luitz 2015, Newman 2005). Of course, the estimated value of 𝛾 must be 

handled with caution because NWS<50 (Barabási 2016: 157). NWS, however, 

is not a scale-free network but operates effectively with anomalous topological 

edge modes. It implies that the robustness of NWS is relatively high against 

random targeting and attacking, but it is low against consciously attacking. The 

special type of interconnectivity of NWS causes high vulnerability in the 

network. Furthermore, this paper emphasizes still that NWS has not power-law 

degree distribution because the number of ties of neighboring vertices is often 

limited if real networks are embedded in the local or global spatial layout. It is 

proved with some tangible examples by Mocnik–Frank (2015) and Mocnik 

(2018). 

In addition, the anomalous regime indicates that a giant component develops 

quickly in NWS; it links to every node and has a special, well-qualified ability 

to acquire connections. This super component appears as the main actor 

bridging among competitors and managing coopetitive activities in NWS.  

4.2.2. Quadrat analysis of NWS 

Firstly, grids embracing 13x13 matrixes are superimposed over the spatial 

layout of NWS and the number of events falling in each grid area is computed 

(Figure 3 and Table 1). The longer side of the rectangle shaped cell is 1626 

metres, and the shorter side is 1237 metres.  
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Figure 3. Quadrat analysis of NWS 

 

Table 1 demonstrates how nodes are clustered extremely in the networked 

space (see the values in the lower right corner in Table 1), the degree of the 

cluster is computed with equations (2), (3), and (4).   
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Table 1. The spatial pattern of NWS is visualized by quadrat analysis. 

0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 1 1 0 0 0 0 0 0 

1 0 0 0 0 1 0 0 0 0 0 0 0 

0 1 1 0 1 1 0 0 0 0 0 0 0 

0 0 0 0 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 3 3 1 0 0 

0 0 0 0 0 0 0 0 2 2 2 4 1 

0 0 0 0 0 0 0 0 0 0 3 2 0 

Resource: my own calculation. The bold number (almost in the center of the matrix) 

illustrates the geographical location of the hub in the networked space. 
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Table 2. Quadrat counts and calculation of the variance for the NWS 

Number of events 

(a) 

Number of quadrats 

(x) 

𝒂 − 𝝁 (𝒂 − 𝝁)𝟐 𝒙(𝒂 − 𝝁)𝟐 

0 141 -

0.2426 

0.0588547 8.2985127 

1 20 0.7574 0.57365476 11.4730952 

2 4 1.7574 3.08845476 12.35381904 

3 3 2.7574 7.60325476 22.80976428 

4 1 3.7574 14.11805476 14.11805476 

Total 169   69.05324598 

Source: my calculation. Mean cell count (𝜇): 𝜇 =
𝑉

𝑥
; 𝜇 =

41

169
= 0.2426. Variance: 

69.05324598

41
= 1.6842255. Variance/mean cell count (VMR): 

1.6842255

0.2426
= 6.942396  

Table 2 reports that 𝜇 = 0.2426, 𝑠2=1.6842255, and VMR=6.942396. Since 

VMR is greater than 1 (𝑉𝑀𝑅 ≫ 1), spatial patterns of NWS are regarded as a 

clustered, centralized, and complex system but it is not a star graph.  

Besides, the quadrat analysis permits the description of the physical distance 

between nodes. Empirical findings show that the average distance of linkages 

is 8.206 meters, the longest distance is 21.140 meters, and the shortest distance 

is 364 meters in NWS.  

Moreover, by applying quadrat analysis, the spatial position of the hub can be 

identified. Firstly, those grids must be found in which giant components exist. 

It can be obtained simply if we pinpoint and mark the cells in which the most 

connected vertex/vertices appear. By using this method, the physical position 

of a hub could be stated in NWS located in almost the center of a networked 

space (Table 1). Interestingly, the position of the hub can be discovered 

relatively far from the groups of clustered network players, the average 

distance between the super component and southwestern clustered nodes is 

almost 4.5 km.  

The paper presupposed that most vertices would allocate very close to the 

geographical position of the hub. Notwithstanding, this empirical measurement 

does not verify it because the hub is pinpointed relatively far from clustered 
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vertices. Nevertheless, the coopeting connections between the focal firm and 

network agents overcome physical distance; the physical distance can be 

defeated and shortcut by utilizing social proximity in NWS (Boschma 2005). 

To summarize, the degree distribution points out that the hub ties to every 

competitor while rivals rarely connect to each other; the NWS possesses 

anomalous topological edge modes following a dispersion pattern. The quadrat 

analysis, however, accentuates that the super-components of the NWS 

geographically and physically exist relatively far from clusters of vertices; the 

hub emerges in almost the center of the networked space (Table 1) meanwhile 

clustered network agents are located on the periphery. Both edges and nodes 

are significantly clustered in NWS. 

Summary and conclusion 

This paper demonstrates a new CMNSE measurement model with which the 

complex structure of a real network can be analyzed and quantified. The 

CMNSE synthesizes two well-known techniques of degree distribution and 

quadrat analysis as well. This model perceives the structural and spatial 

properties of edges and vertices at the same time to present the nature, function, 

and robustness of a real network. Why is it important fundamentally? In the 

21st century, useful networks (societal, market-based economic, motorway, 

street, infrastructural, etc.) and harmful networks (terrorist, hackers, gossip, 

drug, mafia, hoax, virus, etc.) can be compartmentalized. The first one should 

be improved and the second one must be destroyed. By applying the CMNSE, 

both can be conducted. First, the key is to find the hub and its spatial position 

in the networked space that manages and controls the whole network (Barabási 

2016). If a hub location is pinpointed, it may be supported or targeted 

depending on whether they are useful or harmful. Diverse impacts spread 

through the hub in the network, it hence is enough to support or impede the 

hub to manage or control the whole network.   

More broadly, scientific papers have so far scrutinized the hub by degree 

distribution although these focus on merely answering the question of whether 

the hub exists or not in a real network. Nevertheless, by applying the CMNSE 

that synthesizes well-known methods of degree distribution and quadrat 

analysis, we could define the numbers and spatial, physical locations of hubs 

to understand network structure and, subsequently, impact operational 

mechanisms of complex systems.  
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The main limit of the CMNSE is that only structural traits of two-dimensional 

networks can be described. Topologies of three-dimensional networks cannot 

be characterized by this model. The next step is to develop CMNSE to 

scrutinize the structure of the three-dimensional network in the future. 
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