Show Advanced search options Hide Advanced search options
Q-PCR analysis of the resistance of Hungarian Botrytis cinerea isolates toward azoxystrobin
Published October 30, 2011

The genes being in the mitochondrial DNA primarily encode the enzymes of cellular respiration. Fungicides belonging to the family of quinol oxidase inhibitors (QoIs) play on important role in the protection against several plant diseases caused by fungi. These fungicides bind to the cytochrome bc1 complex so they block electron transport betwee...n cytochrome b and cytochrome c1. This way these fungicides inhibit the ATP synthesis consequently they inhibit the mitochondrial respiration. The QoI resistance has two mechanisms. One of them is the point mutation of the cytochrome b gene (CYTB), e.g. the substitution of a single glycine by alanine at position 143 results in high-resistance. The other is the cyanide-resistant alternative respiration sustained by the alternative oxidase.
In a cell there are several mitochondria. The phenomenon when the genomes of all mitochondria in the cell are identical is called homoplazmy. If in the cell there is wild and mutant mitochondrial DNA this is called heteroplasmy. Whether the mutation in the mitochondria causes fenotypical diversity or does not depend on the dose, i.e. it depends on the percentage of the changed mitochondrials. During our work we investigated Botrytis cinerea single spore isolates which have been collected in 2008-2009 on different host plants. Our goal was to decide whether heteroplasmy influences the level of resistance. We managed to detect the change of the level of heteroplasmy, so the change the level of the resistance due to the treatment with fungicide.

Show full abstract
Ideas on the European stone fruit yellows – as an entomologist can see them
Published November 2, 2014

...5); font-variant-ligatures: normal; font-variant-caps: normal; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">The European stone fruit yellows (ESFY) is an important endemic disease in Europe which causes in both, the Mediterranean countries and Central Europe serious damage. Its pathogen is the ‘Candidatus Phytoplasma prunorum’. The treatment and healing of the diseased trees and plantations with chemicals do not promise success. Thus, prevention may be the only solution. The transmission and spread of the pathogen happen by infected propagation material (grafting) or a vector (the psyllid, Cacopsylla pruni). Mechanism of the pathogen’s transmission and population dynamics of the vector have been extensively investigated in several European countries, which may allow by the control of C. pruni even to hold back the disease. Diseased stone fruit trees and wild Prunus spp. as main host species play an important role in maintaining and spreading the pathogen. C. pruni collects the pathogen by feeding on these plants and it carries persistently ‘Ca. P prunorum’. Researchers in Hungary have been characterized the disease only in terms of plant pathology, but neither the significance of the vector nor the role of wild Prunus spp. have been studied. This summary intends to give clues to these researches, that not only axe and saw should be the instruments of national control, but knowing the role and population dynamics of the vector the stone fruit production should be more successful.

Show full abstract
1 - 2 of 2 items