Search

Published After
Published Before

Search Results

  • Studies of the effects of N fertilizers and Microbion UNC biofertilizer on microelement content of horseradish (Armoracia macrocarpa)
    41-45
    Views:
    115

    A field experiment on calcareous chernozem soil was performed to study the effects of different N and bacterial fertilizers on the nutrient content of horseradish (Armoracia macrocarpa). In the experiment the trials were arranged in a randomized block design with three replications, applying three levels of NH4NO3 and different N fertilizers, namely ammonium-nitrate, urea and calcium-nitrate, with or without application of Microbion UNC biofertilizer.
    In the present paper the changes and distribution of manganese, zinc and copper contents of the horseradish plant are summarized by the
    effect of different treatments.
    The Mn content of leaves were higher in all cases than those of roots, but Zn mainly accumulated in the roots. The distribution of copper within the horseradish plant was more equalized than that of Zn and Mn. Different N fertilizers and increasing doses of ammonium-nitrate had effects mainly on the microelement contents of leaves. The highest Mn contents of plant were measured in treatments of Ca(NO3)2 and Ca(NO3)2+Microbion. The lowest ammonium nitrate dose (N1) decreased the Mn content of leaves compared to control, but further doses
    (N2, N3) did not alter these values any longer. Microbion UNC biofertilizer did not have any effect on the Mn content of roots, but we measured higher Mn in leaves in some combined treatments. Ca(NO3)2 increased the zinc content in leaves and roots in a noticable manner. With the increasing of NH4NO3 doses, the Zn content of leaves and roots augmented significantly. Neither N fertilizers (or the increasing doses of NH4NO3) nor the biofertilizer application influenced the Cu content of horseradish plant. 
    N fertilizers had higher effects on the microelement content of horseradish, the biofertilizer’s effect was smaller and was not the same in every treatment.

  • The effect of different bacterial fertilizers on the AL-soluble P2O5 content of soil, and the biomass of the rye-grass (Lolium perenne, L)
    93-98
    Views:
    186

    In pot experiment the effect of different bacterial fertilizers on some soil properties, and the amount of plant biomass were studied. The
    experiment was set up in 2010 at the Department of Soil Science and Agricultural Chemistry, in a three replications in a random block design. The ryegrass (Lolium perenne, L.) was used as a test plant. The studied soil type was calcareous chernosem soil from Látókép. In our laboratory AL-soluble P2O5 content of soil, the phosphatase enzyme activityof soil, the dry weight of rye-grass, and the phosphorus content of rye-grass were determined.
    The results of the study were the following:
    – The bacterial fertilizers - by basic treatments NPK - had significant positive effect on the AL- soluble phosphorus content of the soil.
    – The soil phosphatase enzyme activity was increased in all cases strongly by the microbial preparations used, the greatest impact was the Bactofil A bacterial fertilizer.
    – The plant educed P values significantly increased by the effect of microbial products, in addition to the fund NPK. In this case, the EM-1 and Microbion UNC bacterial fertilizer were the effective.
    – In case of the rye-grass biomass none of the bacterial preparations used caused any significant changes, either alone or when used them with straw treatment.

  • The effect of different microbial preparations on some soil characteristics
    83-86
    Views:
    97

    In pot experiment the effect of different microbial inoculants and their combinations with NPK fertilizer and wheat straw on some soil properties (physical, chemical, and microbiological parameters) were studied. The experiment was set up in 2011 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. The studied soil type was calcareous chernozem soil from Debrecen (Látókép) with ryegrass (Lolium perenne, L.) test plant.
    At the end of the experiment in our laboratory the nitrate-nitrogen content of soil, the AL-soluble phosphorus and potassium content of soil, the urease enzyme activity of soil, the total number of bacteria and the number of microscopical fungi were determined.
    The results of the study were the following:
    – The straw treatment and the straw + biofertilizer combinations influenced positively the nitrate content of soil.
    – The NPK fertilization and the straw+bacterial fertilizer combinations had significant positive effect on the AL-soluble phosphorus content of the soil.
    – The biofertilization and the straw+biofertilizer combinations stimulated the AL-soluble potassium content of soil occasionally.
    – The total number of bacteria was influenced by the NPK fertilization, the bacterial fertilization and the straw+bacterial fertilizer combinations significantly.
    – In case of the number of microscopic fungi caused in some cases significant changes the NPK+bacterial fertilizer and straw+bacterial fertilizer combinations.
    – The soil urease enzyme activity was increased in all cases strongly especially by the straw+bacterial preparation combinations.

  • Impact of ammonium nitrate and Microbion UNC bacterial fertilizer on dry matter accumulation of ryegrass (Lolium perenne L.)
    35-39
    Views:
    80

    Pot experiment was performed to investigate the effects of increasing NH4NO3 doses with or without Microbion UNC bacterial fertilizer
    application on dry matter production of ryegrass (Lolium perenne L.). Experiment was set up on calcareous chernozem soil of Debrecen-Látókép and on humus sandy soil of Őrbottyán. The bi-factorial trials were arranged in a randomized complete block design with four replications. Grass was cut three times. Dry matter production was determined and the sum of biomass of cuts was calculated as cumulated dry weights. Analysis of variance was carried out on the data in order to provide a statistical comparison between the treatment means. The least significant difference (LSD5%) test was used to detect differences between means. On the basis of our results it can be concluded, that the dry weights of ryegrass cultivated on chernozem soil were higher than on sandy soil. With increasing nitrogen supply the dry matter production of grass significantly increased in both types of soils. In case of sandy soil the increasing effect was more expressed, but dry weights of this soil never reached the appropriate values of chernozem soil. Application of Microbion UNC had positive effect on dry matter production of ryegrass grown on both two types of soils but the effect was more expressed on chernozem soil. Finally it can be concluded that the increasing effect of NH4NO3 on biomass weights was more expressed in both types of soils, the biofertilizer application also increased the dry weights of plant in a small degree. 

  • Improved soil and tomato quality by some biofertilizer products
    93-105
    Views:
    237

    The use of microbial inoculums is a part of sustainable agricultural practices. Among various bioeffectors, the phosphorus-mobilizing bacteria are frequently used.

    The objective of this study is to investigate the effect of some industrial biofertilizer inoculums, of containing P-mobilizing bacteria on the quantity and some quality parameters of tomato fruits. Spore-forming industrial Bacillus amyloliquefaciens FZB42 (Rhizovital) as single inoculums and combinations with other Bacillus strains (Biorex) were applied on Solanum lycopersicon Mill. var. Mobil test plant. Soil microbial counts, phosphorus availability, yield and fruit quality, such as total soluble solids (TSS) content and sugars (glucose, fructose) were assessed. The results found that single industrial inoculums of FZB42 product had positive effect on P-availability and fruit quality in the pots. Fruit quality parameters, TSS content, soluble sugars were significantly improved (p<0.05). Such better fruit taste was correlated significantly by the most probable number (MPN) microbial counts. Use of such bioeffector products is supported by the positive interrelation among measured soil characteristics and inside healthy quality parameters of tomato fruits.

  • The effect of biopreparations in pot experiment
    45-49
    Views:
    129

    In pot experiment the effect of Amykor and Organic Green Gold bioproducts and their combinations with NPK fertilizer on some soil properties (chemical parameters) and on the biomass of testplant were studied. The experiment was set up in 2012 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. The studied soil typein the pot experiment was humus sandy soil from Debrecen-Pallag with onion (Allium cepa) test plant. At the end of the experiment (after 4 week) in our laboratory the samples of soil and plant were determined. The nitrate-nitrogen, AL-soluble phosphorus and potassium content of soil, the weight of green onion leaves, the wet weight of bulb and root of onion and biomass of onion. The results of the study were the following: – The treatments influenced positively the nitrate-nitrogen, the AL-soluble phosphorus and potassium content of soil. – The most effective treatments were the artificial fertilization (NO3-N) and the NPK+ simple dose of Amykor (AL-P2O5 and Al-K2O). – The NPK fertilization and the NPK+OGG (sprinkle in every 10 days) combinations had significant positive effect on the weight of green onion leaves. – The biofertilization and the straw+biofertilizer combinations stimulated the AL-soluble potassium content of soil occasionally. – The OGG treatment (sprinkle in every 10 days) had significant effective impact on the wet weight of bulb and root of onion. – The biomass of onion was increased by the artificial fertilization and OGG (sprinkle in every 10 days) treatment.

  • The effect of apoplastic pH on the nutrient uptake
    65-71
    Views:
    94

    The pH of soil and rhizosphare –around the roots- determine the mobility and solubility of nutrients. The exudates organic acids of plant able to modify the pH, as well as the microorganisms also take part in mobilization of nutrients. The nutrient solve mostly in mildly acidic and neutral pH. The either assumption of utilization of nutrients is the uptake by roots and of course uptake to the cells to take part in metabolism. The pH of apoplast fluid determines the solubility and uptake of nutrients to the cells.
    The aim of this study was to examine the effect of nutrient solution and apoplastic pH together with a bacteria based biofertiliser (Phylazonit MC®) on nutrient uptake and pH of apoplast fluid in case of nutrient solution grown plants in laboratory experiment. According to my results, the bicarbonate increased the pH of nutrient solution in due to influence the solubility and uptake of nutrients. The given bicarbonate to the nutrient solution and infiltrated into the apoplazma also modified the pH of the apoplast fluid of the test plants. The effect of bicarbonate and biofertilizer were different on the pH of the apoplast fluid and nutrient solution in nutrient solution experiment.