Search

Published After
Published Before

Search Results

  • Fungi detected in trunk of stone fruits in the Czech Republic
    121-127
    Views:
    206

    This study was focused on detection of the spectrum of fungi in the wood of stone fruits using molecular genetic methods. Samples were obtained from apricots, plums and sweet cherry trees from region of Moravia, one sample was obtained from Myjava (Slovakia). Segments of symptomatic wood were obtained from dying stone fruit trees with very significant symptoms. This study describes detection of the fungi in the wood of 11 trees in general in 5 localities. The cultivation of the fungi from symptomatic wood and sequencing of ITS was carried out. Eleven fungal genera were determined in the stone fruits wood, particularly Irpex lacteus, Fomes fomentarius, Neofabraea corticola, Calosphaeria pulchella, Cytospora leucostoma, Phellinus tuberculosus, Stereum hirsutum, Collophora sp., Pithomyces chartarum, Aureobasidium pullulans,Fusarium sp. The results of this study demonstrate that the reason of declining of stone fruit trees in Moravia is caused probably by trunk pathogens.

  • Dieback of apricot plantations caused by 'Ca. Phytoplasma prunorum' in Borsod-Abaúj-Zemplén county (Northern-Hungary)
    34-41
    Views:
    106

    Plant diseases caused by phytoplasmas have increasing importance in all over the world for fruit growers. Lately, phytoplasma diseases occur on many fruit varieties and responsible for serious losses both in quality and quantity of fruit production. In the long-run these diseases cause destruction of fruit trees. The apricot phytoplasma disease (Ca. Phytoplasma prunorum) was first reported in Europe in 1924 from France. In 1992 the disease has also been identified in Hungary. On the base of growers' signals serious damages of "Candidatus Phytoplasma prunorum" Seemüller and Schneider, 2004 (formerly: European stone fruit yellows phytoplasma) could be observed in different stone fruit plantations in the famous apricot-growing area nearby Gönc town, Northern-Hungary. Field examinations have been begun in 2009 in several stone fruit plantations in Borsod-Abaúj-Zemplén County mainly in Gönc region which is one of the most important apricot growing regions in Hungary, named “Gönc Apricot Growing Area”. Our goals were to diagnose the occurrence of Ca. Phytoplasma prunorum on stone fruits (especially on apricot) in the North-Hungarian growing areas by visual diagnostics and confirm data by laboratory PCR-based examinations. All the 28 collected samples were tested in laboratory trials and at 13 samples from apricot, peach, sour cherry and wild plum were confirmed the presence of phytoplasma (ESFY). On the base of observations it seems evident that the notable losses caused by "Ca. Phytoplasma prunorum" is a new plant health problem to manage for fruit growers, especially apricot producers in Hungary. 

  • Self Pollination and Fruit Quality-Comparative Research of Sweet Cherry Cultivars
    295-299
    Views:
    75

    In fruit production – among stone fruits – sweet cherry is considered to have great promise, but species of sweet cherry need improvement. Cherry plantations are advanced in years, therefore putting into operation high productivity plantations is an important field of research. Through clonal selection and cross-breeding, several new cherry species were created in the recent past in Hungary. Spread of these species is also important. In our factorial cherry production, we use high trunk trees and trees with large crowns. Intensive plantations are very few in number.
    Our goal is to study the morphological and physiological properties of new sweet cherry cultivars. The most important aim is to combine the productive area of foliage and the fruit quality. The present study shows the self pollination, fruit setting and fruit quality parameters.

  • Studying on the frost damage of some peach and nectarine varieties
    13-15
    Views:
    84

    To be able to grow stone fruit species, the peach and the nectarine varieties, yield stability is very relevant. However, the climate is suitable in Hungary for growing stone fruits. We have to calculate with damage. Important winter damage and spring frost damage occur in every second year on the Great Pplains. To reveal the frost tolerance of cultivars and to clarify the differences among growing areas is the most important point of peach and nectarine production.
    We, made our experiments in the winter of 2005 (January-February), at Pallag, Zsombó, Siófok, Sóskút and Szatymaz. These former places are determinant in peach and nectarine growing in Hungarian respects.
    In our experiments we analyzed 10-10 fruit shoot from 82 varieties, and we measured the frost damage and the flower bud density.
    The minimum and the maximum frost damage values (%) at the different growing places were 7.6-38.7 at Siófok, 6.5-31.3 at Sóskút, 34.3-100 at Szatymaz, 83.7-99.6 at Pallag and 51.9-99.6 at Zsombó. There were expressive differences between the same cultivars depending on the growing area.
    The frost damage of „Suncrest” variety was 7.6% at Siófok, 8.2% at Sóskút but it was 69.8% at Szatymaz. The „Maystar” variety had 17.6% at Siófok, 12.4% at Sóskút and 87.2% frost damage at Szatymaz. In case of „Redhaven” variety the frost damage values were 16.8% at Sóskút, 54.6% at Szatymaz. We collected fruit shoots from three different heights in case of „Cresthaven” variety. In case of 1 meter height the frost damage was 74.6%, at 2 meter height 44.7%, and 25.2% at 3 meter.
    We experienced also big differences in flower bud density (flower bud/10 cm) of varieties. The following cultivars had the highest flower bud density (6-7 bud/10 cm): „Suncrest”, „Meystar, „Maria Luisa” and the „Maria Bianca”, „Redhaven”, „Michellini” had the lowest flower bud density (2-3 bud/10 cm).
    After our experiments we established that there were very expressive differences among the frost damage of peach and nectarine varieties from different climatic conditions and there are also big variance between the frost damage values of those fruit shoots, what were collected from different heights, but from the same variety. It conspicuous very good among our items, that difference of the flower bud density is very big among the varieties.To be able to grow peach and nectarine successfully, the suitable variety (low frost damage value, high flower bud density) and the suitable growing are is determinant.

  • Phytoplasma diseases on fruits in Hungary
    24-29
    Views:
    157

    In the last twenty years, three phytoplasma diseases were identified in Hungary, viz. European Stone Fruit Yellows (ESFY) (caused by Candidatus Phytoplasma prunorum), pear decline (caused by Candidatus Phytoplasma pyri), and apple proliferation (caused by Candidatus Phytoplasma mali). Candidatus Phytoplasma prunorum was isolated from apricot, peach, plum and japanese plum. Cacopsylla pruni the vector of ESFY was also isolated and identified. Infection of Candidatus Phytoplasma pyri was diagnosed from pear and Candidatus Phytoplasma mali was found on apple and pear. The three phytoplasmas cause different damages on their host plants. The most economically important phytoplasma disease is the ESFY. It seriously impairs apricot and japanase plum trees. After infection of apricots and japanese plums show yellowing and defoliation, and within a few years die in apoplexy-like symptoms. The disease on japanese plum is so severe that this fruit practically can not be cultivated in Hungary. Pear decline is the most serious problem especially in intensive pear plantations. The vector Cacopsylla pyri, C. pyrisuga and C. pyricola can be found in almost all pear orchards. Because of the regular presence of psyllids in intensive pear orchards the insecticide control is necessary. Apple proliferation is not an important disease in Hungary. All of our isolations of ’Candidatus Phytoplasma mali’ occured in organic orchards and record was not available in Hungary lately.

  • How does the S-locus determining self-incompatibility in stone fruits work in self-compatible peach?
    93-100
    Views:
    88

    The majority of stone fruit species are self-incompatible, a feature that is determined by a specific recognition mechanism between the S-ribonuclease enzymes residing in the pistils and the F-box proteins expressed in the pollen tubes. Failure in the function of any component of this bipartite system resulted in self-compatibility (SC) in many cultivars of Prunus species. Peach (Prunus persica (L.) Batsch.) is the only species in the Prunoideae subfamily that is traditionally known to be self-compatible, but its molecular background is completely unknown. Isoelectric focusing and S-gene specific PCR revealed that SC is not due to functional inability of pistil ribonucleases. We hypothesize that SC may be a consequence of a kind of pollen-part mutation or the action of one or more currently unknown modifier gene(s). Only two S-alleles were identified in a set of peach genotypes of various origin and phenotypes in contrast to the 17–30 alleles described in self-incompatible fruit trees. Most important commercial cultivars carry the same S-allele and are in a homozygote state. This indicates the common origin of these cultivars and also the consequence of self-fertilization. According to the available information, this is the first report to elucidate the role of S-locus in the fertilization process of peach.