Search

Published After
Published Before

Search Results

  • Examination of CO2 emission of different stubbles on a chernozem soil
    53-59
    Views:
    80

    Applying alternative soil cultivation methods based on reduced disturbance of the soil more favourable conditions can be created in order to increase the organic matter content of the soil and the availability of the nutrients for the crops. In complex soil tillage experiment – in 1997 was set on – at Karcag, as the element of the investigation of soil reduced and conventional tillage systems. There is close correlation between the degree and intensity of CO2-emission from the soil and the structural state and organic matter content of the soil. In order to quantify the increased CO2-emission from soil due to soil preserving cultivation systems, in situ CO2-emission of soil was measured by means of an ANAGAS 98 infrared gas analyser. The soil type of the investigated plot is meadow chernozem solonetz in the deeper layers, a soil type that is characteristic
    for the Trans-Tisza Region of Hungary. In this paper the results gained from the measurement on different stubbles are published, as we consider stubbles the most suitable state when the effects of different soil cultivation systems on the microbiological activity of the soil can be compared. Experimental data provided information about the length of the time period when CO2 emission increasing effects of soil cultivation are observable. Studying the effect of different soil cultivation methods on the CO2 emission from chernozem soil is indisputably actual and needs more efforts as it can contribute to develop a more environmental friendly agricultural production. The main goal of these measurements was to determine the effect of soil cultivation technologies and certain agrotechnical elements on the factors of the soil carbon cycle.

  • Soil analysis as the foundation of precision nutritive supply in the Hajdúszoboszló region
    141-148
    Views:
    71

    Larger cultivated plots are heterogeneous from a pedological aspect. Heterogeneity causes problems during fertilization and harvest. The heterogeneity of cultivated areas can be compensated by fertilization which is based on soil analysis. We carried out research into the changes of the soil on three soil types, from 1966 to 2006, on the cultivated areas of Hajdúszoboszló.
    There were no significant changes in pH on chernozem meadow soil and meadow chernozem soil, but the pH increased in 0-30 cm layer on type meadow solonetz soil. The saline content decreased in every examined soil type. Decrease was the largest on meadow solonetz soil. Decline of humus content was the largest (0.95%) on chernozem meadow soil, and the smallest (0.39%) on meadow chernozem soil. The nitrogen content decreased with 528 ppm in the 0-30 cm layer on chernozem meadow soil, and decreased by 186 ppm on meadow solonetz soil. Phosphorus and
    potassium content increased in every examined soil types. Rise of phosphorus content was 188.9 ppm in the 0-30 cm layer on meadow chernozem soil. The potassium content rose by 153.7 ppm on this soil type. Phosphorus content increased with 70.8 ppm, and potassium content increased by 57.6 ppm from 1966 to 2006.

  • Heavy Metals in Agricultural Soils
    85-89
    Views:
    69

    The soil constitutes the basis of the food chain. To keep soil conditions in a good trim is very important, it’s part of the sustainable development and of producing food supply harmless to health.
    In some cases, soil productivity is the only important part, qualitative requirements or economical characteristics can improve it. The soil is threatened by two danger factors: the soil degradation and the soil pollution. The accumulation of different harmful and/or toxic substances in the soil is well known. Heavy metals constitute a part of it. Metals in the soil and in the soil-solution are balanced. This balance depends on the type of the metal, on the pH, on the cation-band capacity of the soil, on the redox relations and the concentration of cations in the soil.
    To be able to handle the metal contamination of the soil, it is important to estimate the form, the possible extension and the concentration of metals.
    Of course, the different types of soils have different physical-chemical, biological and buffer capacity, they can moderate or reinforce the harmful effects of heavy metals. To draw general conclusion of the dispersion and quantitative relations on the metals originated from different contamination sources is hard, because in some emissive sources contamination is limited in small areas but on a high level, some others usually expand on larger areas, and as a result of equal dispersion, the contamination’s level is lower.
    Heavy metals – unlike alkali ions – strongly bond to organic materials, or infiltrate in a kelát form. Their outstanding characteristic is the tendency to create metal-complex forms. Kelats take part in the uptaking and transportation of heavy metals. Heavy metals exert their effects mostly as enzyme-activators.
    The metals cannot degrade in an organic way, they accumulate in living organisms, and they can form toxic compounds through biochemical reactions.
    Lot of the heavy metals accumulate on the boundaries of the abiotic systems (air/soil, water/sediment), when physical or chemical parameters change, and this influences their remobilization.
    Human activity plays a great part in heavy metal mobilization, results in the human origin of most biochemical process of metals.
    To understand the toxic influence of accumulated metals of high concentration, their transportation from soils to plants or their damage in human health, must clearly defined and investigated.
    For effective protection against soil pollution, the types and levels of harmful pollution to soil must identified, regarding legal, technical and soil-science aspects, preferable in a single way. Difficulties in this area mean that toxicity depends on loading, uptake, soil characteristics and living organisms (species, age, condition etc.), furthermore, local and economic conditions considerably differ.

  • Comparative analysis of soil analysing datas on different sempling-plots
    85-90
    Views:
    64

    Hibrid maize is cultivated on larger plots, therefore the sown areas of hibrid maize are heterogeneous from a pedology aspect. Heterogenity causes problems during tasseling, chemical plant protection and harvest. The heterogenity of sown areas can be compensated by fertilization which is based on soil analysis. We carried out research into change of the soil on four soil types from 1987 to 2005.
    There were no significant changes in pH, hydroiodic acidity, CaCO3-content, humus-content on meadow chernozem soil. We detected equalization of salin content in the examined soil layers. There were no significant changes in the measured values on chernozem meadow soil and solonetz meadow soil in 2005. We discoverd equalization of saline content on chernozem meadow soil, but the changes were not as obvious as the changes on meadow chernozem soil. We found salinization in the 30-60 cm soil layer on type meadow soil that may be due to water movement.

  • The effect of different microbial preparations on some soil characteristics
    83-86
    Views:
    97

    In pot experiment the effect of different microbial inoculants and their combinations with NPK fertilizer and wheat straw on some soil properties (physical, chemical, and microbiological parameters) were studied. The experiment was set up in 2011 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. The studied soil type was calcareous chernozem soil from Debrecen (Látókép) with ryegrass (Lolium perenne, L.) test plant.
    At the end of the experiment in our laboratory the nitrate-nitrogen content of soil, the AL-soluble phosphorus and potassium content of soil, the urease enzyme activity of soil, the total number of bacteria and the number of microscopical fungi were determined.
    The results of the study were the following:
    – The straw treatment and the straw + biofertilizer combinations influenced positively the nitrate content of soil.
    – The NPK fertilization and the straw+bacterial fertilizer combinations had significant positive effect on the AL-soluble phosphorus content of the soil.
    – The biofertilization and the straw+biofertilizer combinations stimulated the AL-soluble potassium content of soil occasionally.
    – The total number of bacteria was influenced by the NPK fertilization, the bacterial fertilization and the straw+bacterial fertilizer combinations significantly.
    – In case of the number of microscopic fungi caused in some cases significant changes the NPK+bacterial fertilizer and straw+bacterial fertilizer combinations.
    – The soil urease enzyme activity was increased in all cases strongly especially by the straw+bacterial preparation combinations.

  • Effects of cultivation methods on some soil biological parameters of a meadow chernozem soil (Vertisols)
    61-66
    Views:
    76

    The effect of extended drought conditions on soil, the unfavourable cultivation technologies and the application of chemicals have been enhancing the processes of physical and biological soil degradation, so the fertility of soil is gradually declining. 
    The effects of two cultivation methods – traditional ploughing (TP) and conservation tillage (CT) – on the biological activity of a meadow
    chernozem soil were examined in a long term experiment. Different parameters of the biological activity of soil were determined. These are
    the numbers of total bacteria, microscopic fungi, aerobic cellulose decomposing bacteria, as well as the activities of some important soil
    enzymes and CO2 production.
    Conservation tillage seemed to be a more favourable cultivation method for the majority of microorganisms, the activities of urease and
    dehydrogenase enzymes and CO2 production, compared to the traditional ploughing system. These parameters increased significantly,
    especially in the upper layer of conservation tillage plots. Concerning the plant cultures, the majority of microbiological parameters were
    higher in the soil of vetch (Vicia sativa L.) depending on the cultivation methods, so involving the pulses to the crop-rotation seems to be
    very important in this soil type.
    According to the ninth year’s results, the importance of conservation tillage as a means of protecting the soil biological activity in meadow
    chernozem (Vertisols) can be established; it was proven by microbiological investigations.

  • The effect of different bacterial fertilizers on the AL-soluble P2O5 content of soil, and the biomass of the rye-grass (Lolium perenne, L)
    93-98
    Views:
    186

    In pot experiment the effect of different bacterial fertilizers on some soil properties, and the amount of plant biomass were studied. The
    experiment was set up in 2010 at the Department of Soil Science and Agricultural Chemistry, in a three replications in a random block design. The ryegrass (Lolium perenne, L.) was used as a test plant. The studied soil type was calcareous chernosem soil from Látókép. In our laboratory AL-soluble P2O5 content of soil, the phosphatase enzyme activityof soil, the dry weight of rye-grass, and the phosphorus content of rye-grass were determined.
    The results of the study were the following:
    – The bacterial fertilizers - by basic treatments NPK - had significant positive effect on the AL- soluble phosphorus content of the soil.
    – The soil phosphatase enzyme activity was increased in all cases strongly by the microbial preparations used, the greatest impact was the Bactofil A bacterial fertilizer.
    – The plant educed P values significantly increased by the effect of microbial products, in addition to the fund NPK. In this case, the EM-1 and Microbion UNC bacterial fertilizer were the effective.
    – In case of the rye-grass biomass none of the bacterial preparations used caused any significant changes, either alone or when used them with straw treatment.

  • Review of research on salt-affected soils in the Debrecen agricultural high educational institutions, with special focus on the mapping of Hortobágy
    471-484
    Views:
    65

    The history of the research of Debrecen scholars on salt-affected soils of Hortobágy and the region is very rich and diverse. 
    Focusing on mapping, the following stages can be distinguished, indicating the completeness of the maps and the purpose of the performed work
    − First, quantitative maps (Arany, 1926) for the utilization of the lands at 1:75,000 (Figure 1).
    − Second, quantitative map (Kreybig, 1943) for the utilization of the lands at 1:25,000.
    − Third, category map (Kreybig et al., 1935) testing the suitability of the classification system at  :75,000.
    − Fourth, partial category map (Szabolcs, 1954), showing the reasons of unsuccessful management at 1:10,000.
    − Fifth, partial quantitative map (Csillag et al., 1996), showing the utility of digital sampling at 1:25,000.
    − Sixth, partial quantitative map (Tamás and Lénárt, 2006), showing the capacity of multispectral  remote imagery at 1:100.
    − Seventh, partial quantitative map (Douaik et al., 2006), showing the usefulness of geostatistical  mapping at 1:10,000.
    − Eight, national quantitative maps (Pásztor et al., 2016), showing the applicability of geostatistics for administrative purposes at 1:10,000.
    − Ninth, partial quantitative/category map (authors, 2019), finding the optimal methods at 1:10,000.

  • Regulation in Hungary of the Use of Waste Water and Sewage Sludge in Agriculture
    143-149
    Views:
    104

    Regulating the use of waste water and sewage sludge in agriculture in such a way as to prevent harmful effects on soil, vegetation, animals and man.
    In European Union there is a Council Directive (86/278/EEC) on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture.
    In the enlargement process of the European Union the Hungarian Government created a new rule (50/2001. (IV. 3.) Government regulation) which regulate using of waste water and sewage sludge in agriculture. This Hungarian rule is legal and reconcilable with the Council Directive.
    The Regulation lays down limit values for concentrations of heavy metals in the soil, in waste water, in sludge and for the maximum annual quantities of heavy metals which may be introduced into the soil.
    Waste water, sludge and soil on which it is used must be sampled and analysed.
    Sewage sludge must be treated for six months before being used in agriculture.
    The use of waste water and sludge prohibited on grassland, on nature reserved areas, in ecological farming, and soil in witch fruit and vegetable crops are growing, with the exception of fruit trees.
    The states soil conservation authority must keep records registering the following:
    – the quantities of waste water and sludge produced;
    – the composition and properties of sludge;
    – the type of treatment carried out;
    – the names and addresses of the recipients of the sludge and places where the sludge is to be used.
    The Government every four years must prepare a consolidated report on the use of sludge in agriculture, specifying quantities used, criteria followed and any difficulties encountered. This report must be forwarded to the Commission.
    Last but not least in the light of Member States reports, the Commission will if necessary submit appropriate proposals for increased protection of the soil and the environment.

  • Effects of long-term K fertilization and liming on the extractable and exchangeable K contents of a Haplic Phaeosem soil
    141-145
    Views:
    30

    Effects of regular K fertilization and liming on the easily extractable K content of a Haplic phaeosem soil determined in 0.01 M CaCl2
    and AL (traditional method in Hungary) were examined in the B1740 type of the National Uniformed Long-Term Fertilization Experiments
    at Karcag.
    Close correlation (r=0.95) was found between the 0.01 M CaCl2 and ammonium lactate - acetic acid (AL) extractable K contents of
    soils.
    K fertilization increased the amount of 0.01 M CaCl2 and AL extractable K significantly. Liming had different effects on the amounts of
    K extracted by these two methods. Liming increased the amount of AL-K and decreased the amount of CaCl2-K. CaCl2 extractable K was in
    close correlation with the relative amount of exchangeable K content of the soil (K%) and the agronomic K balance. The results of regression
    analysis confirmed that the CaCl2-K characterized K% and the AL-K related to the absolute amount of exchangeable K.
    On the basis of the presented results it can be stated that the 0.01 M CaCl2 is able to detect not just the increase of easily extractable K
    caused by fertilization and liming but the changing of the rate of the relative amount of exchangeable K.

  • Energy crops on less favoured (alkaline) soil
    115-118
    Views:
    99

    The reduction in fossil energy and row material sources induces growing demand for renewable resources. The growing demand for herbal raw materials has land use impacts as well. One way to reduce the conflict between the food and energy crops can be the utilization of less favored areas by growing energy crops. Among the potentially available areas for this purpose the salt affected soils (SAS) occupy a significant territories. SAS with structural B-horizon (meadow solonetz soils) represent the most wide spread group of SAS in Hungary. About half of these soils have been reclaimed and used as arable land and the remaining 50% are used as grassland. Sweet sorghum production for manufacturing of alcohol production was investigated in a long term amelioration and fertilization experiment on a salt affected soil (meadow solonetz). By means of regression analyzes the effect of sodium content of the soil and increasing mineral fertilizer doses were studied. According to the multiple regression analysis only the effect of nitrogen fertilizer was significant. On the solonetz type salt affected soil the effect of water soluble salt content of the soil was not significant, but there was a closer correlation between the ammonium-lactate sodium content and the yield of sweet sorghum. The maximum green mass was 45–50 t ha-1, in the case of low Na content and high level of nitrogen fertilization.

    In order to quantify the potential yield of natural grass vegetation the relationship between the soil forming processes and the grass vegetation
    was investigated. Beyond the different forms of Na-accumulation, the spatial pattern (mosaic-like characteristic) is also an inseparable feature of salt affected soils. The difference in the water regime, caused by the micro-relief is the main cause of variability. The run-on water keeps the deeper parts of the catena position wet longer. The wet situation causes more intensive leaching. In the low-laying parts of salt affected soils species preferring wet situations (mainly Alopecurus pratensis) are in majority. On the higher parts of the micro-relief species tolerating dry situations (mainly Festuca  pseudovina) are dominant. The yearly grass production of low laying areas can be 4–7 t ha-1 but because of prolonged wet  conditions the grass is not grazed and mowing can only be in old state. This old grass is not proper for feeding, but it may be suitable as energy plant. 

  • Effect of different sources and doses of sulphur on yield, nutrient content and uptake by spring wheat
    109-115
    Views:
    127

    The objective of this study was to investigate the effect of two sulphur forms (sulphate and tiosulphate) in combination with three different N:S ratios on the yield of spring wheat and total N- and S-content and uptake by the aboveground biomass on chernozem and sandy soil. In the greenhouse experiment, the effects of two sulphur forms were compared: sulphate (SO42-) and thiosulphate (S2O32-). The sulphate was applied as potassium-sulphate (K2SO4) and thiosulphate as ammonium-thiosulphate ((NH4)2S2O3). Increasing doses of both sulphur forms (24, 60, 120 kg S ha-1) were used with the same nitrogen dose (120 kg N ha-1) which caused three different N:S ratios background (1:0.2, 1:0.5, 1:1). Nitrogen was supplied in the form of monoammonium-phosphate (MAP), ammonium-nitrate and ammonium-thiosulphate. Plant samples were taken in three different development stages of spring wheat based on the BBCH scale: at the stage of BBCH 30–32 (stem elongation), BBCH 65–69 (flowering) and BBCH 89 (ripening). The total nitrogen and total sulphur content of plant at different development stages and also wheat grain were measured by Elementar Vario EL type CNS analyser. The nutrient uptake by plant and grain was calculated from the yield of spring wheat and the N and S content of plant.  The grain yield on chernozem soil ranged between 6.31 and 12.13 g/pot. All fertilised treatments significantly increased the grain yield compared to the control. The highest yield was obtained in the case of the application of 120 kg N ha-1 and 60 kg S ha-1in sulphate form. The grain yield on sandy soil varied from 2.53 to 6.62 g/pot. The fertilised treatments significantly enhanced the yield compared to the control. The highest yield was observed in the case of the application of 120 kg N ha-1 and 60 kg S ha-1 in thiosulphate form. On chernozem soil the increasing doses of sulphur (24, 60, 120 kg S ha-1) with the same N dose (120 kg N ha-1) increased the N-content of spring wheat at all development stages and in the grain. The treatments with different sulphur sources did not cause further changes in the N-content. On sandy soil in the most cases the N-content did not change significantly as a result of increasing sulphur doses. The treatments with sulphate form basically resulted higher nitrogen-content than treatments with thiosulphate form. The treatments with increasing sulphur doses resulted higher S-content on both of chernozem and sandy soil in the case of all development stage. Comparing the effect of the applied sulphur sources on the S-content it can be stated that at the stage of BBCH 30–31 and 65–69 the treatments with sulphate form resulted higher sulphur-content. At the stage of BBCH 89 there was no significant differences in S-content of grain as a result of different sulphur-sources.

  • Influence of phytophagous mammals environment-forming activity on the soil invertase fermentative activity in conditions of mining impact region
    127-130
    Views:
    97

    Excretorial and fossorial activity of mammals is an important part of environment-forming activity. Mammals have influences on important biogeocenotic processes, especially on the soil processes. Determination the maintenance of soil invertase as one of diagnostic description the ecological state allowed defining limits of oscillation index in dump areas and in clean (control) native areas. The obtained results of the investigation indicate the soil depth, duration of experiment and type of area influence on soil invertase activity with the high statistical level of significance. Positive influence is revealed on invertase activity changing on dump areas, where an active excretorial and fossorial activity of phytophagous mammals was observed.

  • The effect of crop coverage on the daily dynamism of the soil’s CO2 emission
    97-102
    Views:
    89

    Nowadays one of main goals of international ecosystem research the measurement of greenhouse gases (CO2, N2O and CH4) in different places. The fluctuation of these greenhouse gases – quantity and trend in the case of CO2 and CH4 – could be diverse with atmosphere because it depends on several effects of factors like climate, soil type, vegetation. In grassland out of the three greenhouse gases which fill a part in gas emission, in the case of CO2 soil and vegetation are the most important factors (Soussana et al., 2007).
    In the aspect of global carbon balance grasslands are very important by their large area extension, total carbon content, organic content store (10% of the global carbon storage) (Lemmens et al., 2006). In this summer measurements were carried out to determine CO2 emission of the soil from different soil surfaces like grass covered and bare soil surface during a whole day.

  • The impact of production methods and row orientation on carrot quality in the case of various cultivars
    65-69
    Views:
    128

    Carrot is a wellknown and favoured, really important vegetable. Carrot’s cultivation is important, although its growing field has been reduced in last few years. The suitable cultivar and landstructure are essential to produce good quality carrot. The ridge cultivation is widely spread on plasted soils. At this type of cultivation relationship between line orientations and carrot quality is less studied. That is the reason we tried to examine in our experiment the relationship between ridge highness and line orientation (N-S and E-W) and carrot’s morphological features at different genotipes. The experimental was settled in the Experimental Garden of the University of Debrecen on limy chernozem soil by plain, raised bed and ridge cultivation in 2013. In the experiment we examined four longgrowing cultivars (Danvers 126, Fertődi vörös, Rekord, Chantenay). The sowing was at 24th April. The harvest was at 15th October, 2013. In the multi factorial (type of cultivation, line orientation, cultivar) experimental we explained the effect of treatments on carrot root shoulder diameter and root weight.

    In our experiment we stated that line orientation had no significant effect on shoulder diameter at different cultivations. The only exception is Fertődi vörös which has reached the biggest shoulder diameter (5 cm <) at N-S direction on raised bed. By examining the carrot rootweight we stated that they were higher in raised bed and ridge cultivation than in plain cultivation with the exception of one cultivar (Chantenay). This carrot had found ideal environment for growing between each cultivation conditions. That is why we can state that if you grow carrot on plasted soil and there is no possibility to make a ridge, use short, tapered and rounded ending root type for successful growing.

  • Agricultural relations of the increasing carbon dioxide emissions
    197-201
    Views:
    184

    Emissions of carbon dioxide (CO2) have deserved more and more attention of humanity since decades, but inspite of theme asures already taken there are no substantial results. CO2 is a very important chemical, one of the greenhouse gases, which on the one hand offsets the cooling of the Earth, but on the other hand the too high CO2 emission leads to the global warming. The emission from the soil contributes substantially to the global cycle. This type of emission is influenced by the soil moisture, temperature, the soil quality and the cultivation. Through our measurements we have studied the relationships between the type of cultivation and the emissions of carbon dioxide.

  • Examination of the Binding Forms of Cu, Zn, Pb and Cd
    161-165
    Views:
    27

    Cu, Zn, Pb and Cd binding forms were examined on brown forest soil with clay illuviation, on clcareous chernozem and on meadow soil type. We applied one metal ion and the mixture of all at two different concentrations on the soils. Our results show all the four metal ions significantly bound to the mobile fraction on brown forest soils, while on calcareous chernozem and on meadow soil type they were mainly in other fractions. The higher heavy metal load and the presence of other metal ions increased the ratio of the mobile binding form.

  • Comparative analysis of sample preparation methods to determine the concentration of arsenic in soil- and plant-samples
    167-170
    Views:
    130

    Arsenic contamination of the fields and groundwater is a global problem. Alföld is the most affected area in Hungary. Irrigation witharsenic contaminated water, and crop production on the contaminated soil can cause a food safety problem, because arsenic is easy taken up by the cell of the plant roots. To prevent this, very important to monitoring the arsenic content of soils and plants. Inductively coupled plasma mass spectrometry (ICP-MS) is a fast, easy method to determined the concentration of minerals in the case of plant and soil samples The analytical methods can give reliable, results if the analytical process, including the sample preparation method, is the best. The objective of this study was to compare 3 type of sample preparation method which was dry ashing, wet digestion in open system, and microwave digestion. As a result of our experiement shows the microwave digestion is the appropriate method to determined the arsenic content of soil samples. In the case of plant samples we can use wet digestion in open system or microwave digestion as a samle preparation method.

  • Usage of Different Spectral Bands in Agricultural Environmental Protection
    123-126
    Views:
    81

    Hyper and multispectral imaging systems are widely used in agricultural and environmental protection. Remote sensing techniques are suitable for evaluating environmental protection hazarsd, as well as for agriculture resource exploration. In our research we compared aerial hyper and multispectral images, as well as multispectral digital camera images with the background data from the test site. Hyperspectral records were obtained using a new 80-channeled aerial spectrometer (Digital Airborne Imaging Spectrometer /DAIS 7915/. We have chosen two farms where intensive crop cultivation takes place, as test sites, so soil degradation and spreading of weeds can be intensive as a result of land use and irrigation. We took additional images of air and ground with a TETRACAM ADC wide band multispectral camera, which can sense blue, green and near infrared bands. We had detailed GIS database about the test site. Weed and vegetation map of the area in the spring and the summer was made in 2002. For soil salt content analysis, we gathered detailed data frome an 80x100 m area. When analyzing the images, we evaluated image reliability, and the connection between the bands and the soil type, pH and salt content, and weed mapping. In the case of hyperspectral images, our aim was to choose and analyze the appropriate band combinations. With a TETRACAM ADC camera, we made images at different times, and we calculated canopy, NDVI and SAVI indexes. Using the background data mentioned above, the aim of our study was to develop a spectral library, which can be used to analyze the environmental effects of agricultural land use.

  • Interaction of yield stability and year in major agricultural crops
    41-46
    Views:
    85

    The effect of hydro-meteorological extremities on plant cultivation is the result of the correlation of many factors. These may increase or decrease the effects of hydro-meteorological extremes. The degree of this variance depends on the professionality of treatments, on the quality of the applied technique and technology and also on the soil’s water management characteristics.
    The water management characteristics of Hungary’s arable land are mainly unfavorable or medium. In the past two decades the conditions of originally good soils, from a water management aspect, have significantly deteriorated in the critical 0-60 cm soil layer. This is mainly due to unprofessional land use, a lack of deepening cultivation and neglected organic cultivation. At the same time, hydro-meteorological extremities occur more frequently and the sensibility of plant cultivation has increased.
    The sensibility of plant cultivation is type and location specific, yet, it also effects both the quality and quantity of the result.
    The stability analysis, which covered the period of four decades and incorporated 6-7 agro-ecological areas proves and highlights the following:
    • Winter wheat only reacted to extensive cultivation and unfavorable environmental conditions to a small degree. On the other hand, the effect of hydro-meteorological extremities increases.
    • The stability analysis of maize, which is sensitive to cultivation technology and the location of cultivation, proved just the opposite. Good soil and adequate technology significantly reduces the effect of any particular year.
    • From the years examined, the most favorable proved to be the one with average precipitation. Maize reacted to both extremities in a similar way. Winter wheat reacted to more precipitation with less yield.
    • The yield quality of winter wheat was negatively effected by drought. The negative effect of precipitation is limited to the period of ripening and harvest, so the likelihood of such an effect is not significant.
    • The yield of sunflower – due to pests – significantly reduces in years with high precipitation, while a difference between dry and average years cannot be pinpointed out. The oil content in both dry years and in years with high precipitation is evident, compared to years with average precipitation.
    • The root yield of sugar beet is reduced by drought while the sugar content depends on soil characteristics and climatic extremities. A difference could also be noted by location, whether in Western Hungary and on the Great Plain. Great sugar content can be achieved in years with high precipitation in Western Hungary, while the same result occurred with average precipitation on the Great Plain. Drought did not have a positive effect on sugar content in either location.

  • Yield and sward composition responses of a native grassland to compost application
    35-38
    Views:
    170

    A major part of the animal products are based on the grasslands, due to the fact that the grassland ecosystems can be found all over the globe. In places where economical and successful crop production cannot be realized, the grassland based animal husbandry can be an efficient way of food production. In addition these ecosystems have an important role in carbon sequestration, and with their rich flora – and the fauna connected to it – in conservation of biodiversity. The protection of nature, and the sustainable agriculture is getting more and more attention in the European Union, but looking at the consumers’ needs, the production of healthy food cannot be neglected either. Because of these facts, the effects of two specific composts - which are officially authorized in organic farming, in Agri-environment Schemes and Natura 2000 programs – on grass yields and sward compositions were investigated in a field trial. The investigation took place in Hungary, on a natural grassland based on solonetz soil. The first type of compost was a natural one (N) without any additional material and the other one was enriched in phosphorus (E). Both was produced by the research institute, made of sheep manure. Three rates of compost (10 t ha-1, 20 t ha-1,30 t ha-1) were tested on 3 m×10 m experimental plots. Every treatments had four replications and both type of compost had four-four control plots too, this way 32 experimental plots were included in the investigations. The yield of the pasture was harvested two-times (in May and in September) and before cutting the plots measurements on botanical compositions were made. Samples for laboratory analysis were also taken. Dry matter yield and crude protein content was measured in laboratory and with the received data the yield per unit area was calculated. Based on the research results we can say that the application of compost in any dose inflicts higher dry material and crude protein yield. The changes were partly due to some positive changes in sward composition, because of the better nutrient conditions. The research results indicate, that use of organic compost can be an efficient way to increase grass yields in a sustainable way.

  • Methane emission from Matsuo rice paddy field in light of different fertilizers, costs, profit and carbon credit
    9-13
    Views:
    162

    Nowadays global warming is a major issue to our environment. This issue is generated by the modern human activities like industry and intensive agriculture. This research is about methane emission from rice paddy fields. The aim of the study is to lower the methane emission from the field with the help of using different type of fertilizers, whilst we keep in focus the efficient economic operation. The main experimental field is Matsuo paddy field, (Matsuo town, Sanbu city, Chiba prefecture) which is analyzed by the Chiba University’s soil science laboratory, they provided the data for this study. During the study three type of fertilizer was analyzed which are all organic and the control was a regular chemical fertilizer. For all fertilizers the cost and income of the production were calculated and the profit was weighted with the methane emission what a specific fertilizer produced during the cultivation. In the future if the organic fertilizers are in focus than it is necessary to find a new material what can be competitive with the chemical fertilizers in focus of GHG emission or find an alternative way of the usage of methane in biogas production.

  • A tárolási feltételek hatása a kukorica Fusarium fertőzöttségére és toxin szennyezettségére
    28-32
    Views:
    195

    Corn samples harvested in 1997, 1998 and 1999 from different soil types were stored at different conditions (temperature, moisture content, state of kernels) for six months. The Fusarium contamination was examined by plate dilution method and the amount of mycotoxins (F-2, T-2, HT-2, DON, DAS) were determined applying HPLC method immediately after harvesting and in the third and sixth month of storage. The aim of our study was to find correlation between the ecological factors, storage conditions and the examined parameters mentioned above, as well as to prove them statistically. According to the examinations carried out after harvesting we could state that the soil type had no effect on the parameters. Analysing the effect of the years we found considerable differences. The Fusarium infection of corn samples in 1998, while the toxin contamination in 1999 was the highest. The results of storage experiment show that year (number of microscopic fungi, F-2, T-2, HT-2, DAS and total toxin content) and moisture content of kernels (F-2, T-2, and total toxin content) have a significant effect on the examined parameters. We could prove the effect of temperature on the T-2 content (samples with natural moisture content) and DON content (samples with 14% moisture content). Higher values were found at higher temperature storage. The ratio of damaged kernels influenced the DON concentration in the non- wetted samples and the number of microscopic fungi in the wetted samples.

  • Genetic and Practical Classifications of Hungarian Saline Soils (Contemporary Publication)
    111-118
    Views:
    55

    The first part of the paper treates possible ways of soil alkalisation and the differences due to the reaction of the medium, neutral or alkaline, respectively. Alkalisation may occur in any soil, independently of the type, or even in soil-like formations, if conditions are favorable. Alkali soils are so-called hydrogenetic formations, developed in part through water effects. Under conditions prevailing in Hungary two kinds of salt migration processes, opposite to one another, are observable, i.e.:
    1. Leaching downward, causing decrease in the base content of the upper layers,
    2. Capillary rise of salts, causing increases in base content of the upper layers.
    Accumulation of soluble salts usually takes place in the transition zone where these two processes get into contact with each other (Fig. 1).
    * A közlemény első ízben a Bukaresti Nemzetközi Talajtani Konferencián (1958. IX. 26-án) német nyelven: „Die genetische Klassifizierung der ungarischen Szikböden” címen hangzott el.
    As precipitation amounts in the Hungarian lowlands from 500 to 550 mm and causes leaching, true saline soils do not occur, except on some spots.
    Between the two extreme types – completely leached, and salinized where leaching is completely absent, respectively – there exists a long range of soils alkalised or salinized to various degrees. Thus the various types of alkali soils display an interdependence with one another as shown in Fig. 2.
    This interrelations may perform a base for the genetical classification of alkali soils of various properties and peculiarities. Summarising the facts stated above the paper offers a roughly, elaborated scheme for the classification of Hungarian alkali and saline soils, shown in a comprehensive table, the particulars of which are dicussed in the text. Thus the foundation is laid down for a detailed classification of alkali soils that later may become incorporated into an internationally approved system of alkali soils. The so-called practical classes of alkali soils – determined according to methods of reclamation – may be inserted into the delineated genetical system.

  • Complex evaluation of agrotechnical factors in rape seed
    59-63
    Views:
    95

    A polifactorial field trial with rape was carried out in the crop-years of 2007/2008 and 2008/2009 at the Látókép Research Centre of University of Debrecen, 15 km away from Debrecen. The soil type of the research area was a calcaric chernozem, with a levelled and homogeneous surface. Our investigations on the dynamics of lodging proved that rape can easily be lodged under unfavourable weather conditions, which results in a significant crop failure: In crop-year 2009 yields were 1.0-1.5 t ha-1 higher than in 2008, when the weather conditions were more unfavourable. In both crop-years the influence of sowing time on the crop yield of rape was examined in three soil cultivation systems, with ploughing, loosening or disking. Different sowing time influenced the yield of rape in both crop-years significantly. In the crop-year of 2007/2008 – due to mild winter – we got the highest yield in the first sowing time (at the end of August) with loosening (3930 kg ha-1) and disking (3727 kg ha-1), while in case of ploughing we experienced the highest yield (3770 kg ha-1) in the second sowing time. There were no significant differences between the first and second sowing time (the end of August and the beginning of September), and in the third sowing time (end of September) also a moderate crop failure (-6.7%) cold be obtained, due to the favourable weather in winter and the water supply of the crop-year 2007/2008. In 2008/2009 all the three cultivation systems showed the best yield-results in the second sowing time (ploughing: 4886 kg ha-1, loosening: 5186 kg ha-1, disking: 5090 kg ha-1), and the first sowing time hardly differed from this (-4.1%), while the late September sowing time resulted in a significant crop failure of -11.1%.