Search

Published After
Published Before

Search Results

  • Assessment of Environmental Susceptibility/Vulnerability of Soils
    62-74
    Views:
    84

    Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
    The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
    Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
    Soil resources are threatened by the following environmental stresses:
    – soil degradation processes;
    – extreme moisture regime;
    – nutrient stresses (deficiency or toxicity);
    – environmental pollution.
    Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
    The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
    The efficient control of these processes necessitates the following consecutive steps:
    • registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
    • evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
    • assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
    • elaboration of efficient technologies for the „best” control alternatives (best management practice).
    Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
    Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
    The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

  • New challenges in soil management
    91-92
    Views:
    189
    Soil management represents two important tasks that are harmonization of the soil protection with demands of the crop to be grown on the given land under prevailing farming condition. Further goals are to preserve and/or develop the soil physical, biological and chemical condition and to avoid the unfavourable changes of the soil biological activity and the soil structure. Classical authors emphasised the importance of creating proper seedbed for plants. In the physical approach, tillage was believed to play an important role in controlling soil processes. Consequently, the period of several centuries dominated by this approach is referred to as the era of crop-oriented tillage (Birkás et al., 2017). The overestimation of the importance of crop requirements resulted in damaging the soils, which inevitably led to turn to the soil-focused tillage. Since the first years of climate change, as the new trends have raised concern, tillage must be turned into a climate-focused effort with the aim of reducing climate-induced stresses through improving soil quality.
    The development of soil management has always been determined by the economical background. At the same time, deteriorating site conditions have contributed to the conception of new tillage trends by forcing producers to find new solutions (e.g. dry farming theory in the past or adaptable tillage theory nowadays). Győrffy (2009) recited the most important keywords were listed in 2001 and that seemed to be important in the future of crop production. These keywords (endeavours) were as follows:
    − Biofarming, organic farming, alternative farming, biodynamic farming, low input sustainable agriculture;
    − Mid-tech farming, sustainable agriculture, soil conservation farming, no till farming, environmentally sound, environmentally friendly, diversity farming;
    − Crop production system, integrated pest management, integrated farming, high-tech farming;
    − Site specific production, site-specific technology, spatial variable technology, satellite farming;
    − Precision farming.
    Győrffy’s prognosis proved to be realistic and the efforts mentioned above have mostly been implemented. New challenges have also appeared in soil management in relation to the last decades. The most important endeavours for the future are:
    1) Preserving climate-induced stresses endangering soils.
    2) Turn to use climate mitigation soil tillage and crop production systems.
    3) Applying soil management methods are adaptable to the different soil moisture content (over dried or wet may be quite common).
    4) Use effectual water conservation tillage.
    5) Use soil condition specific tillage depth and method.
    6) Adapting the water and soil conservation methods in irrigation.
    7) Preserving and improving soil organic matter content by tillage and crop production systems.
    8) Considering that stubble residues are matter for soil protection, humus source and earthworm’ feed.
    9) Site-specific adoption of green manure and cover crops.
    10) Applying site-adopted (precision) fertilization and crop protection. Considering the development in agriculture, new endeavours will occur before long.
  • Impact of the integration of lupine (Lupinus albus) into crop rotation on the extent of soil compaction in the Westsik longterm field trial
    529-537
    Views:
    89

    In order to reduce or eliminate soil compaction, rational crop rotation and appropriate sequence of crops have an increasingly important role in addition to mechanical and tillage solutions. In this respect, introduction of greening in recent years has been a major step, which focuses on aspects of environmentally conscious, soil conserving farming and the improvement of biodiversity. The cornerstone of this strategy is the cultivation of crops that have a beneficial effect on soil properties, such as the use of nitrogen-fixing plants and green manure plants in the cultivation system that have a beneficial effect on soil structure. In our examinations, penetrometer measurements were carried out in the second longest crop rotation-based field experiment in Europe in order to quantify the effects of green crops and crop rotation strategies on soil resistance. Our aim was to evaluate and compare the impact of lupine (Lupinus albus) on the penetration resistance of soil on sour sandy soils. At the time of the penetration resistance measurement, different crop rotations had a significant effect on the development of the parameter in the examined soil layer. The most favourable penetration resistance values were found in the crop rotation, which included lupine as a green manure. The favourable effect is dominant below the cultivated layer (0–40 cm), which is statistically verified. The values of penetration resistance of the cultivated soil layer of lupine sown as primary green manure did not differ significantly from the values measured in the case of the fallowing-based crop rotation. Therefore, the use of lupine green manure instead of fallowing could be worth considering by practical application due to its favourable effects on soil penetration resistance. The use of lupine green manure after the production of rye cultivation resulted in penetration parameters similar to fallowing, irrespective of the green crop and the applied amount of nitrogen fertilizer, which justifies the cultivation of the crop as green manure. In the case of potato cultivating, recorded compaction within the cultivated layer is an obvious consequence of mechanical compaction during harvest; therefore, machinery operations are decisive for the development of penetration resistance values of the cultivated layer. In addition to the beneficial effect of lupine as a green manure crop on soil condition, its nitrogen-fixing ability is also important; it stresses the utilisation of the crop of sour sandy soils for the sake of proper soil management. 

  • Features of forming an invertebrate fauna in technogen environment (Kriviy Rig, Ukraine)
    53-56
    Views:
    128

    The features of invertebrate fauna forming in conditions of technogen pressure (Kriviy Rig, Ukraine) were studied. The taxonomic composition, dominance structure and correlation of soil invertebrates’ functional groups in the large industrial enterprises were examined. It had been found that a small thickness of the soil layer as a habitat for ground animals causes the depletion of taxonomic composition, species richness and decrease the total number of soil invertebrates. Gastropoda molluscs in conditions of technogen pressure are the most adapted to stresses group of invertebrates.

  • The effect of water-stress on the mineral nutrition of fruit plantations
    187-192
    Views:
    83

    Besides agro-techniques the climatic conditions play an important role in agricultural production. Weather extremes are
    significant hazards to many horticultural regions all over the word. It has a profound influence on the growth, development and yields of a
    crop, incidence of pests and diseases, water needs and fertilizer requirements in terms of differences in nutrient mobilization due to water
    stresses. Nowadays, the weather extremes cause more and more problems and significant hazards to many horticultural regions in Hungary.
    The aim of this study is to explore the problems of nutrient uptake followed from climatic anomalies and response it. In this study
    we focus on water supply problems (water-stress).
    Reviewing the effects and nutrient disorders caused by climatic anomalies, the following statements can be taken:
    · Nutrient demand of trees can be supplied only under even worse conditions.
    · The most effective weapon against damage of climatic anomalies is preventative action.
    · Proper choice of cultivars, species and cultivation should provide further possibilities to avoid and moderate the effects of
    climatic anomalies.
    · Fruit growing technologies especially nutrition should be corrected and adjusted to the climatic events as modifier factors.
    · The role of foliar spraying, mulching and fertigation/irrigation is increasing continuously.
    · Urgent task of the near future is to correct and adjust the tested technologies of fruit growing according to these climatic events as
    modifier factors.
    Optimal nutrient supply of trees decreases the sensitivity for unexpected climatic events. To solve these problems supplementary, foliar
    fertilization is recommended, which adjusted to phonological phases of trees. Moreover, mulching is regarded as an excellent water saving
    method.