Show Advanced search options Hide Advanced search options
Assessment of Environmental Susceptibility/Vulnerability of Soils
Published December 10, 2002

Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
The main soil fu...nctions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
Soil resources are threatened by the following environmental stresses:
– soil degradation processes;
– extreme moisture regime;
– nutrient stresses (deficiency or toxicity);
– environmental pollution.
Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
The efficient control of these processes necessitates the following consecutive steps:
• registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
• evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
• assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
• elaboration of efficient technologies for the „best” control alternatives (best management practice).
Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

Show full abstract
SIM Samples Investigation by Statistical Methods
Published May 11, 2003

The assessment of the present condition of the soil is very important, because the accession of the number of the European Union members is in the near future. This can be the base of the modern agrarian environmental management programme. The assessment must be objective, detailed and analyse the processes in the soil.
Respecting the above ...causes was decided to create an Environmental Information Monitoring System. This system consists of more parts. One of them is the Soil Information Monitoring System (SIM). This system started to work in 1992.
This system has two functions. Creating and actuation is obligatory from the international contracts, on the other hand the public SIM has very important role in the conservation of the soil.
The SIM territorial measuring grid consists of 1236 measuring points. These points are representatives. The distributions of the points by the types of soil attend the variety of the types of soil of the country.
The investigated elements in 6 types of soil were in our experiment (the group of scandium and the lanthanide series elements). There are 6 elements above the detection limit (Gadolinium, Neodymium, Praseodymium, Scandium, Samarium, Yttrium).
The Neodymium concentration is 2 times higher than the content of Gadolinium and Yttrium.
The Neodymium concentration is 4 times higher than the content of Praseodymium, Scandium and Samarium.
In the case of Dysprosium, Europium, Lutetium, Terbium, Ytterbium the concentrations were below 1 mg/kg.

Show full abstract
Establishing regional cultivating districts on the basis of the Kreybig practical soil mapping system
Published May 27, 2001

With the help of this report evaluating the current situation of the region, characteristics of the development in agricultural production and regional differences can be clarified. By mapping out the regional soil, land use and climatic conditions and organizing these into a geographical information system, one can easily determine which plant...s are the most ideal to cultivate in that particular region. Moreover, it is a useful tool that enables us to
establish the most favorable land use structure suited to ecological demands and also helps to determine the methods of soil protection.
During our work, we chose administrative units in Szabolcs-Szatmár-Bereg County, based on the latest aspects of regional cultivation.
Our pilot areas are: the small regions of Nyíregyháza, Nyírbátor, Nagykálló, Mátészalka and Csenger.
Using the database, we separated and uncovered the soil conditions of the pilot areas: the chemical and physical properties of the soil layer which is exploited by the roots of the plants, the humus content, the nutrient supply, the thickness of the cultivated layer and the water management conditions.
We separated the districts of regional cultivation, where the basic elements of the traditional Kreybig color systems were applied (light yellow, dark yellow, light brown, dark green, blue, pink, red, gray, greenish brown, reddish purple, light purple, dark purple, light green).
By using the data collected from the pilot areas, we compiled a map database, which is suitable to illustrate the plant cultivating characteristics of the region. We made recommendations to determine the most favorable plants to cultivate in the specific region with the given meteorological and soil conditions, as well as for the shifting of crops.
Our recommendations were also illustrated in a map with a resolution of 1:25000. 

Show full abstract
Development of a Decision Assisting Soil Information System in Agriculture
Published May 4, 2004

Hungarian agriculture may be characterized by the industry-like, conventional farming of the past decades. This form of management concentrated exclusively on functions aimed at production. We have to decrease this disproportion, especially when joining to the EU, by reducing the intensive agricultural regions and adjusting to the goals of the ...2000-2006 NAEP programmes, forming such an agricultural system which integrates the advantages of both environmental protection and complex agricultural systems based on rational foundations. Nevertheless it’s a rational decision to make the soil information system with an exact spatial informatics background as a foundation of agricultural system, because this promotes easy handling as well the connection to possible subsequent modules.

Show full abstract
Virtual Soil Information Systems in the Bihar Subregion and at Tedej Corp
Published May 4, 2004

After evaluating the sample sites’ soils and environmental status, we built up 2 different soil information systems. The first relies on analog data (soil maps), and is based on a regional model; its sample site is the Bihar sub-region. The second is a complex, field scale virtual 3D system, based on several types of data sources. (Aerial pho...tos, GPS, field samples, hyper and multispectral images, soil maps). In this paper, we analyze and evaluate these systems. The greatest advantage of the models is that, with their usage, we can reveal connections which cannot be made by analyzing the individual elements of our data sources. We discovered that with the help of our systems, the monitoring and evaluating of the processes taking place in the soil is more fast and simple.

Show full abstract
Economic questions of precision maize production on chernozem soil
Published November 13, 2012

It is one of the main topical objective to establish the conditions of sustainable farming. The sustainable development in crop production also calls for the harmony of satisfying human needs and providing the protection of environmental and natural resources; therefore, the maximum consideratio of production site endowments, the common impleme...ntation of production needs and environmental protection aims, the minimum load on the environment and economicalness. Precision farmin encompasses the farming method which is adjusted to the given production site, the changing  technology in a given plot, the integrated crop protection, cutting edge technologies, remote sensing, GIS, geostatistics, the change
of the mechanisation of crop production, and the application of information technology novelties in crop production. Modern technology increases efficiency and reduces costs. The efficiency of crop production increases by reducing losses and the farmer has access to a better decision support information technology system. In addition, we consider it necessary to examine the two currently most important economic issues: “is it worth it?” and “how much does it cost?”. During the analysis of agricultural technologies, we used the precision crop production experiment database of KITE Zrt. and the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen.
During our analytical work, we examined three technological alternatives on two soil types (chernozem and meadow). The first technology is the currently used autumn ploughing cultivation. We extended our analyses to the economic evaluation of satellite navigationassisted ploughing and strip till systems which prefer moisture saving. On chernozem soil, of the satellite-based technological alternatives, the autumn ploughing cultivation provided higher income than strip till. In years with average precipitation supply, we recommend the precision autumn ploughing technological alternative on chernozem soils in the future. On meadow soil, the strip till cultivation technology has more favourable economical results than the autumn ploughing. On soils with high plasticity – considering the high time and energy demand of cultivation and the short amoung of time available for cultivation – we recommend to use strip till technologies. 

Show full abstract
The possibility of use of the 0,01 M CaCl2 and Baker- Amacher extractants for the determination of plantavailable potassium
Published November 2, 2009

The Hungarian fertilizing recommendation systems use AL soil test for the evaluation of potassium supply. The 0.01 M CaCl2 is a definitely milder extractant, it extracts the easily soluble and exchangeable potassium amount. Its European introduction was already taken into consideration in 1994. The research project on this topic is s...tarted in several european countries, also in Hungary at the Department of Agricultural Chemisty of Agricultural University of Debrecen. Another advantage this multielement method is that the different element-ratios can also be calculated.
The Baker-Amacher extractant’s principle is that it contains a known amount of K, P, Mg in the CaCl2 solution. During the soil extraction adsorption and desorption process take place, so the adsorption or desorption can be calculated from the original and the final concentrations.
In this paper we introduce the results of comparing analysis of the samples (n=630) from Soil Information and Monitoring System. Our aim was to measure the use of new extractants beside conventional extractant (AL) for the evaluation of K-supply would be reasonable.
It can be stated that there is a medium close relationship (r=0.75) between AL-K and 0.01 M CaCl2-K. My calculations confirmed the results of  former examinations, and proved that the two extractants don’t extract and change the same rate of K-fractions. We found that regression  between 0.01 M CaCl2 and AL depend on texture classes, pH classes, amount of lime, and organic matter content of soils.
Comparing the relations between AL and Baker-Amacher we find relatively loose correlation (r=0.45). We stated that there are K-fixing soils among soils considered to be well supplied with potassium by AL. This might be caused by the high amount of mineral clay and the quality of mineral clay. We stated that the dK averages show that the Hungarian nutrient-supply categories characterize generally well K-supplement of soil.
It can be stated that it would be necessary to use new extractants to specify evaluation of plant available K. We found that the 0.01 M CaCl2 and Baker-Amacher extractants could complete usefully the AL procedure and could help effective potassium fertilization.

Show full abstract
From Organic to Precision Farming (Contemporary Publication)
Published December 10, 2002

The paper presents a short review of the different types of farming systems:
Biofarming, Organic farming, Alternatíve farming, Biodynamic farming, Low input sustainable agriculture (LISA)
Mid-tech farming, Sustainable agriculture, Soil conservation farming, No till farming, Environmentally sound, Environmentally friendly, Diversity
Crop production system, Integrated pest management (IPM), Integrated farming, High-tech farming
Site specific production (SSP), Site specific technology (SST), Spatial variable technology, Satellite farming.
Precision farming
It concludes that the various systems are applicable in different ratios and combinations depending on the natural and economic conditions.
The author predicts an increase in precision technologies , the first step being the construction of yield maps compared with soil maps and their agronomic analysis. Based on this information, it will be necessary to elaborate the variable technology within the field, especially for plant density, fertilization and weed control.
The changes in weed flora during the past fifty years based on 10.000 samples within the same fields using the weed cover method are presented.

Show full abstract
Evaluation of nutrient conditions in open hydroponic system based on tomato production
Published November 15, 2007

Monoculture caused a gradual decline of soil conditions, while nematodes and salt accumulation stimulated the growers to choose alternative practices, such as soilless cultures, which proved their value in Western Europe. Exact statistics are lacking, but estimates deal with approximately 300-400 hectares of vegetable on rock wool, whereas othe...r substrates of soilless culture may multiply this number. Real perspectives are attributed to the forced production of pepper, tomato and cucumber.
Vegetable production in greenhouses may impair the ecological balance of the environment substantially as far as being uncontrolled. Soilless cultures especially should be handled thoughtfully. A fraction of the nutrients administered, more than 25-30%, is doomed to be lost in an open system, and the resulting ecological risk is accompanied with increasing costs of the production.
In Hungary, the quantity of nutrient elements in drainage water is unknown, et all. Connecting the production results with chemical analysis, we gain more information about it.
You can see a mathematical method for evaluation of nutrient and water conditions in tomato hydroponics production.

Show full abstract
Development of an Agricultural Soil Information System
Published May 11, 2003

Since the development of remote sensing nearly 60 years ago, there have been many applications for agriculture. Some have proved effective, while others have not succeeded in assisting farmers with problem solving. Recent advances in the spatial, spectral and temporal resolution of remote sensing as well as potential positive changes in cost an...d availability of remotely sensed data may make it a profitable tool for more farmers. The target area of my research program is the fields cultivated by Kasz-Coop Ltd. considering that this firm is one of the main agricultural firms in the region and its cultivated fields are quite heterogeneous.

Show full abstract
1 - 10 of 10 items