Show Advanced search options Hide Advanced search options
Studies on the Fusarium stalk rot infection of the maize genotypes using the Findex percentage and a computerised image analysis program
Published October 30, 2011

In a continental climate, the pathogens causing the most serious problems are species belonging to the Fusarium genus. When the pathogen attacks the stalk, the plant dies earlier, reducing grain filling and resulting in small, light ears. In addition, the stalks break or lodge, resulting in further yield losses from ears that cannot be harveste...d. During the three years of the experiment, 14 inbred lines were examined. The genotypes were sown in a two-factor split-plot design with four replications, with the genotypes in the main plots and four treatments in the subplots: two Fusarium graminearum isolates (1. FG36, 2. FGH4), 3. sterile kernels, 4. untreated control. The results experiments showed significant differences between the genotypes for resistance to fusarium stalk rot. Among the inbred lines the best resistance to fusarium stalk rot was exhibited by P06 and P07, both of which were related to ISSS. The precision and sensitivity of disease evaluations carried out visually and using image analysis software were compared in the experiment, and with two exceptions the CV values were lower for the image analysis. As the CV for measurements can be considered as a relative error, it can be stated that image analysis is the more precise of the two methods, so this technique gives a more accurate picture of the extent of stalk rot. The extent of stalk rot developing in response to natural infection is extremely environment-dependent, so the use of artificial inoculation is recommended for selection trials. 

Show full abstract
Assessment of Environmental Susceptibility/Vulnerability of Soils
Published December 10, 2002

Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
The main soil fu...nctions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
Soil resources are threatened by the following environmental stresses:
– soil degradation processes;
– extreme moisture regime;
– nutrient stresses (deficiency or toxicity);
– environmental pollution.
Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
The efficient control of these processes necessitates the following consecutive steps:
• registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
• evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
• assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
• elaboration of efficient technologies for the „best” control alternatives (best management practice).
Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

Show full abstract
Sensitivity of methods for estimating reference evapotranspiration
Published September 18, 2014

...5); font-variant-ligatures: normal; font-variant-caps: normal; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">The knowledge of the evapotranspiration of natural ecosystems and plant populations is of fundamental importance in several branches of science, research topics and practical uses. Nevertheless, the harmonization of the large number of methods and the changing user needs often causes problems. Sensitivity analysis of 10 ET0 estimation models and model variants was performed. Magnitude of the obtained outputs and the changes triggered by each atmospheric parameter were evaluated. The objective of the analyses was to get to know the sensitivity of the different models and to select the most accurate and the most suitable ones for adaptation to local circumstances. Therefore, it becomes possible to achieve as high accuracy as possible in applications which need ET0 estimation.

Show full abstract
Element content analyses in the Institute for Food Sciences, Quality Assurance and Microbiology
Published November 13, 2012

The role of chemical elements to ensure and promote our health is undisputed. Some of them are essential for plants, animals and human, others can cause diseases. The major source of mineral constituents is food, drinking water has a minor contribution to it, so the knowledge of elemental intake through food is crucial and needs continuous moni...toring and by this way it promotes the food quality assurance and dietetics.
With the evolution of spectroscopic methods increasingly lower concentrations could be determined, so the elemental composition of a sample could be more precisely and fully described. Due to the results the gathered knowledge up to the present is supported and new observations can be done helping us to understand such complex systems as biological organisms are.
The quality of a food is determined by the full process of its production, consequently it starts with agricultural production so elemental-analysis usually cover the whole soil – plant – (animal) – food chain, by this way the „Fork-to-Farm” precept is true in elemental analysis field also.
The history of elemental analysis in the University of Debrecen, Centre for Agricultural and Applied Economic Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Processing, Quality Assurance and Microbiology goes back to 1980s when the so called Regional Measurement Central gave the background for research. The continuous deployment resulted in an obtain of an inductively coupled plasma atomic emission spectrometer (ICP-AES) in 1988, which extended the scope of examinations due to its excellent performance characteristics
compared to flame atom absorption (FAAS) and flame emission spectrometers (FES). The instrumental park retain up to date correlate to the developing analytical techniques due to acquiring a newer ICPAES in 1998 and an inductively coupled plasma mass spectrometer in 2004 – which sensitivity is three order of magnitude better compared to ICP-AES. The Institute supports the work with its own ICP-AES and ICP-MS since 2011. 

Show full abstract
Managing risk using real options in company’s valuation
Published April 8, 2014

The valuation of company is very important because provides information about the current value/situation of company, and through this, provide the opportunity of choosing the best company’s growth alternatives. The future strategic decisions are characterized by lack of knowledge, information, so all measures of company’s growth are closel...y linked with uncertainty and risk. The company’s valuation process is also related with uncertainty and risk. The risk may result both from the assessed assets and the technique used. In literature, we could find three approaches for risk management: capital budgeting based method, methods based on portfolio analysis and real options approach of risk management. Among them, the real options based methods is the most revolutionary approach for risk management. The advantages of the method, consists in the fact, that the process of establishing strategic decisions integrates the possibility of reversibility, delay and rejections, which isn’t it possible at two previous methods. The method also takes into account the total risk of company, so both the company-specific and systematic risk. In this study, I have used one of the best-known real option based method, the Black-Scholes model, for determining the option’s value. Determination of option value is based on the data of enterprise, which was tested Monte Carlo simulation. One of the basic assumptions of the Black-Scholes model is that the value of option is influenced by several factors. The sensitivity of option’s value could be carried out with so-called “Greeks”.. In the study the sensitivity analysis, was carried out with indicators Delta (Δ), Gamma (Γ) and Vega (ν). The real options based risk management determinations were performed in the R-statistics software system, and the used modules are 'fPortofio' and 'mc2d'. By using of real options method, I have calculated the average value of company capital equal with 38.79 million. By using simulation was carried out 1000 runs. The results of this show a relatively low standard deviation, small interquartile range and normal distribution. In the calculation of indicator Delta, could be concluded the value of company moves in 0.831 proportion to the price of options, the standard deviations of index is low, so the real option based method could be used with success in company’s value estimation. The Gamma index shows the enterprise value is sensitive just for large changes. The result of Vega reflects the value of option, so the company’s value volatility, which is small in this case, but this means a volatility of value. In summary, we can conclude that the call options pricing model, well suited for the determination of company’s value.

Show full abstract
Determination of the validation parameters of inductively coupled plasma mass spectrometer (iCP-mS): response curve linearity in the case of arsenic and selenium
Published July 31, 2012

In the field of elemental analysis inductively coupled plasma mass spectrometers (ICP-MS) have the best sensitivity that means the lowest limit of detection, subsequently their applicability for the detection of essential and toxic elements in foods and foodstuffs is prominent. For the most elements could be measured the detection limit is betw...een μg kg-1 (ppb) and ng kg-1 (ppt) e.g. for arsenic and selenium.

Considering an analytical task (sample type, analytes and their concentration, pretreatment procedure etc.) the applicability of an analytical method is determined by its performance characteristics. The purpose of validation is to ensure that the method would be used fulfills the requirements of the given task. In this article we describes one of the performance characteristics, the linearity, and the whole validation procedure aims measurement of arsenic and selenium in foodstuffs by inductively coupled plasma mass spectrometer (Thermo XSeries I.); but because of the limited number of pages the results are demonstrated only for arsenic.

The linearity of calibration was evaluated in three concentration ranges (0.1–1 μg l-1; 1–10 μg l-1; 10–50 μg l-1), with nine line-fit possibilities (without weighting, weighting with absolute or relative deviation; with or without forcing the curve through blank or origin) and different methods (graphical examination, correlation coefficient, analysis of variance).

The best method to ensure the linearity of correspondence between signal and concentration was the ANOVA test. In view of calibrations it was found that the range of 10–50 μg l-1 could be regarded as linear with four line-fit possibilities, and was non-linear between 0.1–1 μg l-1 and 1–10 μg l-1.

Show full abstract
The Role and Significance of Soil Analyses in Plant Nutrition and Environmental Protection
Published March 4, 2006

Hungary has a rich history of soil analyses and soil mapping. Our main tasks today are the preservation of soil fertility as well as balancing the goals of production and environmental protection. The main requirement of agricultural production is to adapt to ecological and economic conditions.
In a series of consultative meetings in the pas...t seven years, representatives from Central and Eastern Europe have analyzed nutrient management practices in their respective countries. According to a joint memorandum agreed upon in 2000, in the countries awaiting accession, the quantity of nutrients used per hectare is considerably smaller than the Western-European usage targeted through special subsidies. The current low nutrient usage contradicts the principles of sustainability and that of the efficient use of resources, jeopardizing soil fertility.
In Hungary, the use of inorganic fertilizers underwent a dynamic development, which manifested itself in an almost tenfold usage growth between 1960 and 1985. This growth slowed down somewhat between 1985 and 1990 and then reduced dramatically after 1990, reaching record lows at the usage levels of the 60s. The nutrient supply has had a negative balance for the last 15 years.
The increasing and then decreasing usage trends can equally be detected in the domestic yield averages of wheat and corn as well as in the nutrient supply of soils. Yields were the largest when usage levels were the highest, and decreased thereafter. Draughts have also contributed to smaller yields. The dramatic decrease in the use of inorganic fertilizers when adequate organic fertilizers are lacking endangers our soils’ fertility.
About 50% of soils in Hungary are acidic. Acidity is mostly determined by soil formation, but especially on soils with a low buffering capacity, this acidity may intensify due to inorganic fertilizers. Sustainable agriculture requires the chemical improvement of acidic soils. According to their y1 values, the majority of our acidic soils need to be improved. This chemical soil remediation is required in 15% of the acidic soils, while it’s recommended for another 20% of these soils.
Results of the analyses conducted in the framework of the soil-monitoring system set up in Hungary in 1992 show that in 95% of the analyzed samples, the toxic element content is below the allowable limit. Cultivated areas are not contaminated; toxicity above the legal level was found only in specific high-risk sampling areas: in the vicinity of industry, due to local overload. The basic principle of sustainable agriculture is to preserve soil fertility without undue strain on the environment. The intensity of the production needs to be considered according to the conditions of the site; i.e.; nutrient management needs to be site-specific. It is recommended to differentiate three types of cultivated land in terms of environmental sensitivity: areas with favorable conditions, endangered areas, and protected areas, and then to adopt nutrient management practices accordingly. To meet all the above-mentioned goals is impossible without systematic soil analysis. Tests conducted by the national monitoring system cannot replace regular field measurements.

Show full abstract
Timing it right: The Measurement and Prediction of Flowering
Published September 5, 2002

Although the model described here was developed from research in controlled environments, there is now considerable evidence that in can be applied to a very wide range of natural environments in several species. Multi-locational trials augmented by successional sowing and, if considered necessary, supplementary illumination in the field to inc...rease daylength, can be used to estimate the values of the model coefficients: (1) to characterize germplasm collections and so predict flowering behaviour elsewhere; (2) for interpreting and understanding crop adaptation; and (3) for genetic analysis of photoperiod sensitivity. We do not yet know whether the model has any contribution to make to the understanding of the biochemical mechanisms of photoperiod and temperature responses, but at the very least, it should provide the basis for indicating the most appropriate environmental conditions, genotypes and physiological stage of the plants most suitable for such investigations.

Show full abstract
Application of the SDS-PAGE method for the characterisation of winter wheat flour quality
Published May 23, 2006

The principle, development and importance of the SDS-PAGE method are presented in this article. The SDS-PAGE method has become one of the basic methods of molecular biological research, because it is widely applicable and its sensitivity is excellent in the separation of wheat storage proteins.
We have shown the application of this method a concrete example. It was also tested whether, it was possible to obtain a better baking quality product from a large amount of poor quality less valuable wheat by fractioning the flour according to particle sizes after grinding. We studied the rheological properties of flours with different particle size fractions from the original flour. The baking quality of the original flour was B2. The 125-90 and 90-63 μm fractions have significantly better baking quality (B1) than the original flour. The protein contents of these flour fractions were also significantly higher than the protein content of the original flour. We had a question: what has influenced the baking quality: the protein content or other factors? We searched for an explanation on these results in the protein composition of the flour samples. We studied the distribution of glutenin-fractions by SDS-PAGE method and evaluated them. We found with correlation analysis that the amount of LMW-Glutenin D-group (52-60 kDa) is in a strong, negative correlation to the baking quality (r = – 0.855*). Therefore, the baking quality of flour samples was influenced by this glutenin fraction.

Show full abstract
1 - 9 of 9 items