Search



Show Advanced search options Hide Advanced search options
Genetic and Practical Classifications of Hungarian Saline Soils (Contemporary Publication)
Published December 10, 2002
111-118

The first part of the paper treates possible ways of soil alkalisation and the differences due to the reaction of the medium, neutral or alkaline, respectively. Alkalisation may occur in any soil, independently of the type, or even in soil-like formations, if conditions are favorable. Alkali soils are so-called hydrogenetic formations, develope...d in part through water effects. Under conditions prevailing in Hungary two kinds of salt migration processes, opposite to one another, are observable, i.e.:
1. Leaching downward, causing decrease in the base content of the upper layers,
2. Capillary rise of salts, causing increases in base content of the upper layers.
Accumulation of soluble salts usually takes place in the transition zone where these two processes get into contact with each other (Fig. 1).
* A közlemény első ízben a Bukaresti Nemzetközi Talajtani Konferencián (1958. IX. 26-án) német nyelven: „Die genetische Klassifizierung der ungarischen Szikböden” címen hangzott el.
As precipitation amounts in the Hungarian lowlands from 500 to 550 mm and causes leaching, true saline soils do not occur, except on some spots.
Between the two extreme types – completely leached, and salinized where leaching is completely absent, respectively – there exists a long range of soils alkalised or salinized to various degrees. Thus the various types of alkali soils display an interdependence with one another as shown in Fig. 2.
This interrelations may perform a base for the genetical classification of alkali soils of various properties and peculiarities. Summarising the facts stated above the paper offers a roughly, elaborated scheme for the classification of Hungarian alkali and saline soils, shown in a comprehensive table, the particulars of which are dicussed in the text. Thus the foundation is laid down for a detailed classification of alkali soils that later may become incorporated into an internationally approved system of alkali soils. The so-called practical classes of alkali soils – determined according to methods of reclamation – may be inserted into the delineated genetical system.

Show full abstract
26
52
Comparative analysis of soil analysing datas on different sempling-plots
Published May 23, 2006
85-90

Hibrid maize is cultivated on larger plots, therefore the sown areas of hibrid maize are heterogeneous from a pedology aspect. Heterogenity causes problems during tasseling, chemical plant protection and harvest. The heterogenity of sown areas can be compensated by fertilization which is based on soil analysis. We carried out research into chan...ge of the soil on four soil types from 1987 to 2005.
There were no significant changes in pH, hydroiodic acidity, CaCO3-content, humus-content on meadow chernozem soil. We detected equalization of salin content in the examined soil layers. There were no significant changes in the measured values on chernozem meadow soil and solonetz meadow soil in 2005. We discoverd equalization of saline content on chernozem meadow soil, but the changes were not as obvious as the changes on meadow chernozem soil. We found salinization in the 30-60 cm soil layer on type meadow soil that may be due to water movement.

Show full abstract
29
43
Methodology adaptation and development to assess salt content dynamics and salt balance of soils under secondary salinization
Published June 1, 2021
199-206

The effect of irrigation with saline water (above 500 mg L-1) is considered a problem of small-scale farmers growing vegetable crops with high water demand in the hobby gardens characteristic of the Hungarian Great Plain. In order to simulate the circumstances of such hobby garden, we set up an experiment including five simple dr...ainage lysimeters irrigated with saline water in the Research Institute of Karcag IAREF UD in 2019. We regularly measured the electric conductivity (EC) of the soil referring to its salt content and the soil moisture content with mobile sensors. Before and after the irrigation season, soil samples from the upper soil layer (0-0.6 m) were taken for laboratory analysis and the soil salt balance (SB) was calculated. The actual salt balance (SBact) was calculated of the upper soil layer (0-0.6 m) based on the salt content of the obtained soil samples. The theoretical salt balance (SBth) was calculated by the total soluble salt content of the irrigation water and leachates. During the irrigation season, we experienced fluctuating EC in the topsoil in close correlation with the soil moisture content. Based on the performed in-situ EC measurements, salts were leached from the upper soil layer resulting in a negative SB. Combining SBact and SBth of the soil columns of the lysimeters, we estimated the SB of the deeper (0.6-1.0 m) soil layer. We quantified 12% increase of the initial salt mass due to accumulation. We consider this methodology to be suitable for deeper understanding secondary salinization, which can contribute to mitigating its harmful effect. By repeating our measurements, we expect similar results proving that saline irrigation waters gained from the aquifers through drilled wells in Karcag are potentially suitable for irrigation if proper irrigation and soil management are applied.

 

Show full abstract
48
53
1 - 3 of 3 items