Search



Show Advanced search options Hide Advanced search options
The impact of different fertilization methods on some microbiological soil characteristics
Published December 21, 2008
119-126

In our experiment, we studied the impact of an organic fertilizer, Bactofil® A10 (half- and full dosage applied in field practice) and an artificial fertilizer of Ca(NO3)2 content in different dosages (20-40 mg kg-1) – in addition to control treatments – on two different soils (calcareous chernozem, humus sandy soil) in 2005-2006, the expe...riment was complemented with treatments applying 250% dosage (100 mg kg-1 N, Bactofil® A10 2.5 times the field dosage) and a compost from urban sewage (25 g kg-1 compost) was also tested on these two soil types. In the
experiment, several soil microbial parameters were studied. The experiment was set up at the Department of Agrochemistry and Soil Science using 1-kg pots.
Our laboratory experiments were performed at the soil microbiology laboratory of UD CAS Department of Agrochemistry and Soil Science, the total number of bacteria, microscopic fungi, nitrifying and aerob cellulose-decomposing bacteria were determined together with the CO2-production of soil, N content of the biomass and urease enzyme activity.
Statistical analysis of the data was done using the program SPSS 13.0, means of the measurements, deviation and significance values were calculated. 
In 2005-2006, the effect of the different dosages of Bactofil® A10, and the Ca(NO3)2 fertilizer on the examined microbial parameters of calcareous chernozem and humus sandy soils can be summarized as follows:
• Concerning the total number of bacteria, both treatments were effective on calcareous chernozem soil, the higher (significant) increment in bacteria number was observed in the artificial fertilizer treatments, while in the humus sandy soil Bactofil treatments had a beneficial effect. The number of microscopic fungi also increased in both treatments, higher numbers were observed in the average of two years in the Bactofil treatments.
• The number of nitrifying bacteria was 2.5 times higher in both high-dosage treatments on calcareous chernozem soil, while on humus sandy soil a slight (not significant) increment was observed only int he high-dosage Bactofil treatment. The amount of aerob cellulose-decomposing bacteria significantly increased on calcareous chernozem soil in both the highdosage artificial fertilizer and the small-dosage Bactofil treatment, however, on humus sandy soil no significant increase was observed in either treatment.
• The CO2-production increased in both soil types, although it was not significant in either treatment. A higher (though not significant) soil respiration was observed in the Bactofil treatments in both soil types.
• The microbial biomass N values were significantly higher in the high-dosage Bactofil treatments, however, the high-dosage artificial fertilizer treatment also increased these values significantly on calcareous chernozem soil.
• On calcareous chernozem soil, urease activity was significantly increased and reduced by high-dosage artificial fertilizer treatments and Bactofil treatments, respectively. On humus sandy soil, urease activity was also reduced except for the high-dosage artificial fertilizer treatment. In 2007, the pot experiment with 250% dosages was complemented with the application of compost rich in organic matter, the results of these treatments are sumnmarized as follows:
• In the case of the total number of bacteria, all three treatments resulted in a significant increase on calcareous chernozem soil with the highest values in the Bactofil treatment. The Bactofil treatment was the most effective on the humus sandy soil, but the artificial fertilizer treatment also
resulted in a significant increment. In the case of the total number of fungi, Bactofil treatments resulted in the highest values on both soils, but the compost treatment also increased the number of fungi in calcareous chernozem significantly. 
• The number of nitrifying bacteria was increased most (significantly) by the Bactofil and compost treatments on both soil types. The amount of cellulose-decomposing bacteria was significantly increased by he compost treatment on calcareous chernozem soil, while its effect was not significant on humus sandy soil. The number of these bacteria was increased significantly by the Bactofil treatment on humus sandy soil.
• On calcareous chernozem soil, all three treatments significantly increased CO2-production, while the compost treatments had the resulted in the largest increment in soil respiration on both soil types.
• The soil biomass N content was significantly increased in both soils by the compost treatment, while in the case of the humus sandy soil, the Bactofil treatment also resulted in a significant increment.
• Urease enzyme activity was significantly increased by the artificial fertilizer treatment on both soils. In calcareous chernozem soil, the Bactofil treatment resulted in a slight (not significant) reduction in enzyme activity. In humus sandy soil, the Bactoful treatment also resulted in a slight reduction, while the compost treatment increased (though not significantly) the urease activity.
Based on our results, it can be stated that all three treatments were effective with respect to the studied soil microbial parameters. For both the calcareous chernozem and the humus sandy soil, the organic fertilizer Bactofil and the compost with high organic matter content had a stronger effect on some soil microbial parameters than the artificial fertilizer.

Show full abstract
32
27
Comparative examination of a mineral fertiliser and a bacterial fertilizer on humic sandy soil
Published December 15, 2010
111-116

In our pot experiment, the impact of a bacterial fertilizer, Bactofil® A10 and a mineral fertilizer Ca(NO3)2 applied in different rates was studied on some soil chemical and microbiological characteristics of a humic sandy soil (Pallag). Perennial rye-grass (Lolium perenne L.) was used as a test-plant. Samples were collec...ted four and eight weeks after sowing in each year. The experiment was set up in 2007-2009 in the greenhouse of
the UD CASE Department of Agrochemistry and Soil Science. The available (AL-extractable) nutrient contents of soil, among the microbial parameters the total number of bacteria, the number of microscopic fungi, cellulose-decomposing and nitrifying bacteria, the sacharase and urease enzyme activity, as well as the soil respiration rate were measured.
Statistical analyses were made by means of the measurements deviation, LSD values at the P=0.05 level and correlation coefficients were calculated. Results of our experiment were summarised as follows:
− The readily available nutrient content of humic sandy soil increased as affected by the treatments, in case of the available (AL-extractable) phosphorus and potassium content the higher value was measured in high-dosage artificial fertilizer treatment.
− The treatments had also positive effect on several soil microbial parameters studied. The higher-dosage mineral fertilizer treatments had a beneficial effect on the total number of bacteria, cellulose-decomposing and nitrifying bacteria. No significant differences were obtained between the effect of treatment in case of the total-number of bacteria, the number of microscopic fungi and nitrifying bacteria.
− On the sacharase enzyme activity the artificial fertiliser treatments proved to be unambiguously stimulating, the urease activity significantly increased on the effect of the lower-dosage Ca(NO3)2 artificial fertilizer treatment. 
− The soil respiration increased in all treatments in related to the amounts applied, significantly increased in the highest rate of Ca(NO3)2 fertilizer addition. 
− Some medium and tight positive correlations were observed between the soil chemical and microbiological parameters studied in case of both nutrient sources. 
Summarizing our results, it was established that the organic and all the mineral fertilizer treatments had beneficial effects on the major soil characteristics from the aspect of nutrient supply. In majority of the examined soil parameters (AL-extractable phosphorus- and potassium, total number of bacteria, number of cellulose-decomposing and nitrifying bacteria, activity of sacharase enzyme) the high rate of Ca(NO3)2 mineral fertilizer treatment proved to be more stimulating, but at the same time the high rate bacterium fertilizer resulted in significant increases in
the nitrate-N content, the AL-potassium content of soil, the total number of bacteria, the number of cellulose-decomposing and nitrifying bacteria and the urease enyme activity. 
Our examinations showed that the mineral fertilizer treatments proved to be more stimulating on most of the soil parameters studied but according to our results, it was established that Bactofil is efficiently applicable in the maintenance of soil fertility and the combined application of
mineral fertilizer and bacterium fertilizer may be a favourable opportunity – also in aspect of the environmental protection – in maintaining soil fertility.

 

Show full abstract
24
33
Evaluation some important microbiological parameters of the carbon cycle in chernozem soils profiles
Published October 24, 2016
33-39

Some chemical and microbiological properties of the carbon cycle were investigated in three chernozem soil profiles. The soil profiles originated from a long term fertilization experiment (potato) of the University of Debrecen, Látókép, Kryvyi Rig Botanic Garden (grassland) and a large-scale farm (sunflower) of Ukraine. The results of the or...ganic C-content, total number of bacteria, microscopical fungi, cellulose decomposing bacteria, CO2-production, microbial biomass carbon and saccharase and dehydrogenase activities were compared and evaluated with the help of correlation analyses. Close correlation was found between the organic carbon content and the number of microscopical fungi,, saccharase and dehydrogenase enzymes’ activities, as well as close correlation was found between the dehydrogenase activity and microbial biomass-C and saccharase activity.

Show full abstract
72
69
Changes of some soil chemical and microbiological characteristics in a long-term fertilization experiment in Hungary
Published September 5, 2018
253-265

Agricultural management practices – directly or indirectly – influence soil properties.

Fertilization rates and crop rotation can strongly affect soil pH, soil nutrient supply and soil organic matter content due to the changes of microbial processes. The objective of this study was to compare the effects of different fertilization d...oses in monoculture and tri-culture of maize (monoculture: only maize grown since 1983, tri-culture: it is a three-year crop rotation system: pea – winter wheat – maize) on selected soil characteristics. The long-term fertilization experiments were set up in 1983 in Eastern Hungary. These experiments are situated west of Debrecen in Hajdúság loess region, on calcareous chernozem (according to WRB: Chernozems).

The test plant was maize (Zea mays L.). One-one pilot blocks were selected from monoculture and tri-culture of the long-term experiments. The observed soil samples were taken in the 30th year of the experiment, in 2013. The doses of NPK fertilizers increased parallel together, so the effects of N-, P- and K-fertilizers cannot be separated.

With the increasing fertilizer doses, the soil pH has decreased in both crop production systems and, in parallel, the hydrolytic acidity has significantly increased. A close negative correlation was proved between the pHH2O, pHKCl and hydrolytic acidity. An increased nutrient content in soil was recorded in every NPK treatment and the available phosphorus and nitrate content increased in higher proportion than that of potassium. Of the measured parameters of C-and N-cycles, fertilization has mostly had a positive effect on the microbial activity of soils. Besides the effects of fertilizer doses, correlation were looked for between soil microbiological properties. Evaluating the ratios among the measured parameters (organic carbon and microbial biomass carbon, OC/MBC ratio; carbon-dioxide and microbial biomass carbon; CO2/MBC proportion), the fertilization rate seems to be favoured by the increase of amounts of organic compounds

Show full abstract
129
93
The effect of different microbial preparations on some soil characteristics
Published July 31, 2012
83-86

In pot experiment the effect of different microbial inoculants and their combinations with NPK fertilizer and wheat straw on some soil properties (physical, chemical, and microbiological parameters) were studied. The experiment was set up in 2011 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random b...lock design. The studied soil type was calcareous chernozem soil from Debrecen (Látókép) with ryegrass (Lolium perenne, L.) test plant.
At the end of the experiment in our laboratory the nitrate-nitrogen content of soil, the AL-soluble phosphorus and potassium content of soil, the urease enzyme activity of soil, the total number of bacteria and the number of microscopical fungi were determined.
The results of the study were the following:
– The straw treatment and the straw + biofertilizer combinations influenced positively the nitrate content of soil.
– The NPK fertilization and the straw+bacterial fertilizer combinations had significant positive effect on the AL-soluble phosphorus content of the soil.
– The biofertilization and the straw+biofertilizer combinations stimulated the AL-soluble potassium content of soil occasionally.
– The total number of bacteria was influenced by the NPK fertilization, the bacterial fertilization and the straw+bacterial fertilizer combinations significantly.
– In case of the number of microscopic fungi caused in some cases significant changes the NPK+bacterial fertilizer and straw+bacterial fertilizer combinations.
– The soil urease enzyme activity was increased in all cases strongly especially by the straw+bacterial preparation combinations.

Show full abstract
49
66
The influence of fertilization on the soil characteristics of a calcareous chernozem in a long term experiment
Published November 3, 2010
47-52

In the long term fertilization experiment of the University of Debrecen, Centre for Agricultural and Applied Economic Science(CAAEC) (Debrecen Látókép), the effects of a 25-year-long fertilization were examined in terms of some chemical and microbiological properties of soil. With the growing doses of fertilizers, the available nutrient cont...ent of soil increased. At the same time the pH significantly decreased, while the hidden acidity increased. Moreover, the ratio between the soil bacteria and microscopic fungi, and the occurrence of microbes also changed. The number of sensitive physiological bacteria groups decreased dramatically. These changes indicate the reactions of living organisms; they correspond to the „resistance stage” of stress effects, but in the case of nitrifying bacteria, they reach the „exhaustion stage”.

Show full abstract
19
27
Effects of some herbicides on the microbiological characteristics of soil nitrogen cycle under maize plantation
Published December 21, 2008
93-100

Nitrogen is a key element for the living organisms and influence not only for the quantity but for the quality of the yield, considerable. Availability of nitrogen from the soil is influenced by several microbiological processes of the Nitrogen-cycle. Among the intensive agricultural production the herbicide application cannot be omitted more i...nformation needs therefore about the inhibitor effect of herbicides on the different microorganisms.
An experiment was set up on calcareous chernozem soil under maize culture. Effect of four different herbicides (Acenit, Frontier, Merlin, and Wing) was investigated. The effect of herbicides was measured to four microbiological parameters of the Nitrogencycle (abundance of nitrifying bacteria, nitrate solubilisation, biomass nitrogen and urease enzyme activity). There were singledouble-  and five times of recommended doses of herbicides applied for two onsecutive vegetation periods.
From the results of the different doses of herbicides, the following can be stated:
– The Acenit has a stimulating effect on nitrifying bacteria in general. The Frontier and Merlin also influenced the quantity of nitrifyers, however in certain cases decreased in another cases increased the number of bacteria.
– The double doses and five times doses of herbicides was found to be increasing the nitrate content of soil, -especially in 2006.
– The quantity of microbial biomass nitrogen increased in the 60% of treatments and decreased in the 40% of the treatments.
– Except of the result of Wing in 2006 and Merlin in 2005, the effect of simple dose herbicides was the smallest on the urease enzyme activity. According to the results the effect of Merlin was positive; the effect of Wing was negative on the soil enzyme’s activity.
Regarding the application of four different herbicides in three  different doses on the microbiological parameters of soil (at two consecutive years-) in 39% of the treatments has resulted a significant inhibitory effect, 28% of the treatments, however have significant stimulating effect on the parameters measured. More than 50% of the inhibitory effect was measured in case of the Wing, at more than 50% of the Frontier the microbiological parameters have not changed.

Show full abstract
19
36
Soil Biological Activity within Integrated and Ecological Management of Soil
Published May 12, 2002
47-52

The effects of the integrated (IS) and ecological (ES) management of soil on chosen parameters of soil biological activity were investigated in the period 1999-2000. The following characteristics were determined: biomass of microorganisms (Cmic), dehydrogenase activity (DHA), an amount of potentially mineralizable nitrogen (Nbiol), and nitrific...ation intensity. Soil samples were collected from a stationary field experiment established in 1990 on gley brown soil at the Experimental Station of Slovak Agricultural University, Nitra. For each field with a different crop rotations two fertilization treatments were selected: (a) no fertilization and (b) use of manure for silage maize and, within IS, also mineral fertilizers. There was a statistically significant difference at α = 0.05 in the amount of biologically released nitrogen (Nbiol) between both systems and in the nitrification intensity in favour of ES. A higher amount of microbial biomass (Cmic) was noted for ES but without statistical significance. Cultivated crops and the timing of soil sampling were found to have the greatest effect on all the parameters observed in individual experimental years and within the two systems of soil management.

Show full abstract
24
19
The effect of different bacterial fertilizers on the AL-soluble P2O5 content of soil, and the biomass of the rye-grass (Lolium perenne, L)
Published December 16, 2012
93-98

In pot experiment the effect of different bacterial fertilizers on some soil properties, and the amount of plant biomass were studied. The
experiment was set up in 2010 at the Department of Soil Science and Agricultural Chemistry, in a three replications in a random block design. The ryegrass (Lolium perenne, L.) was used as a test plan...t. The studied soil type was calcareous chernosem soil from Látókép. In our laboratory AL-soluble P2O5 content of soil, the phosphatase enzyme activityof soil, the dry weight of rye-grass, and the phosphorus content of rye-grass were determined.
The results of the study were the following:
– The bacterial fertilizers - by basic treatments NPK - had significant positive effect on the AL- soluble phosphorus content of the soil.
– The soil phosphatase enzyme activity was increased in all cases strongly by the microbial preparations used, the greatest impact was the Bactofil A bacterial fertilizer.
– The plant educed P values significantly increased by the effect of microbial products, in addition to the fund NPK. In this case, the EM-1 and Microbion UNC bacterial fertilizer were the effective.
– In case of the rye-grass biomass none of the bacterial preparations used caused any significant changes, either alone or when used them with straw treatment.

Show full abstract
53
78
The application of bentonite and zeolite for soil amelioration in acidic sandy soil
Published November 2, 2009
131-137

In a pot experiment, we have studied the effect of bentonite and zeolite in different dosages [control; 5; 10; 15; 20 g kg-1] on acidic (pHH2O=5.65) humus sandy soil. The experiment was set up in 2007 and 2008 in the greenhouse of the UD CASE Department of Agrochemistry and Soil Science. As a test plant, perennial ryegrass... (Lolium perenne L.) was used. 
In laboratory examinations, pH(H2O), pH(KCl), hidrolytic acidity, nitrate-N content, readily available phosphorus and potassium content were determined. Among soil microbial parameters, the total number of bacteria, the cellulose-decomposing bacteria, the carbon-dioxide production, the microbial biomass-C content of soil, and the saccharase enzyme activity were measured. In the experiment the biomass of the test plant was determined.
The effect of bentonite and zeolite in different dosages can be summarized as follows:
− The pH increased under the effect of low dosages. With the increasing of the pH the hydrolytic acidity - at the bentonite treatments significantly – decreased. 
− Regarding the readily available nutrient content of the soil, low and medium dosages proved to be effective. High dosages of bentonite treatments reduced the nitrate-N content, the readily available phosphorus, and potassium content of soil, by zeolite treatments the high dosages reduced the nitrate-N content of soil. 
− Regarding the measured soil microbial parameters in both treatments low and medium dosages proved to be also effective, but the high dosages didn’t cause decreasing at the total number of bacteria, and by zeolite treatments the biomass-C content of soil.
− Also the bentonite and zeolite treatments enlarged the biomass of the test plant. We experienced significant increasing by bentonite treatments by the effect of medium and high dosages, while in zeolite treatments only the high dosage caused significantly increasing in plant biomass. The largest dosages decrease the plant biomass. 
− Under the statistical analysis we found many medium and tight correlation between the studied parameters. 

Show full abstract
23
32
The impact of fertilisation on a few microbiological parameters of the carbon cycle
Published March 5, 2015
45-50

The 30 years old long-term experiment of Látókép is continued in our experiments. The long-term fertilization experiment was set in 1983, and our sample was taken in spring 2014. The examinations of soil respiration processes and factors that influence soil respiration are required in optimal management. In our study, we interested to know h...ow the growing levels of fertilization influence the microbial processes under nonirrigated and irrigated conditions in maize mono, bi, and triculture. The experimental results and those statistics suggest that the bi and triculture influenced higher microbial activity which was reflected in number of fungus, soil respiration, and microbial biomass carbon (MBC).

Show full abstract
76
77
Effect of cadmium and zinc contamination on the population dynamics of soil microorgani
Published March 11, 2014
73-77

Changes in the population dynamics of microorganisms in a soil artificially contaminated with various doses of cadmium and zinc was examined from a quantitative point of view, under laboratory circumstances. The research was based on a chernozem soil originating from the area of a long-term microelement contamination model experiment (Nagyhörc...sökpuszta, Hungary), which was carried out during 1991 in the Experimental Site of the Institute of Soil Science and Agricultural Chemistry, Centre for Agricultural Researche Hungarian Academy of Sciences, Budapest, Hungary. According to the amount of bacteria, microscopic fungi and nitrifying bacteria, it can be stated that the effect of contamination can be observed even in the perspective of nearly two decades. In more cases significant changes in the number of soil bacteria and microscopic fungi could be observed, and the nitrification activity increased in case of both microelements. Therefore the further research of changes in microbial activity of these soils can provide novel scientific results.

Show full abstract
62
64
Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
Published November 3, 2010
121-126

Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop product...ion for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
On the basis of results the following can be stated: 
1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.

Show full abstract
20
28
1 - 13 of 13 items