Search

Published After
Published Before

Search Results

  • Evaluating changes in nitrogen and sulphur content in a soil-plant system in a long-term fertilization experiment
    77-85
    Views:
    128

    The objective of this study was to evaluate the impact of long term NPK fertilization (considering that S containing superphosphate was supplied for 26 years of experiment, but since 9 years S has not used any longer) on sulphur- and nitrogen content and N/S ratio of winter wheat. The second objective of this work was to determine the changes of the amount of the different nitrogen and sulphur fraction in chernozem soil in a long term fertilization experiment. The third aim of the work was to determine if a relationship could be established between the studied parameters. Based on our results, it can be stated that the sulphur containing superphosphate supplied in the period of 1984-2010 has no longer significant effect on total sulphur content of plant in 2018. The NPK fertilization treatments had positive effect on total nitrogen content of winter wheat. In general, increasing NPK doses resulted in significantly higher nitrogen. The effect of irrigation applied in previous years has no statistically significant effect on the sulphur and nitrogen content of wheat. The wheat grain produced in our experiment, especially in fertilized treatments showed S deficiency. Analysing the changes of CaCl2 soluble nitrate-N and total N of the soil, it can be stated that the effect of increasing fertilizer doses clearly appears in these parameters, because the treatment with increasing fertilizer doses resulted higher CaCl2 soluble N forms compared to the control treatment in soil. These values increased until flowering stage of wheat and after that a slightly decrease was observed as a result of higher N uptake of plant. In overall, it can be stated, that the effect of superphosphate on measured sulphur fraction is prevailed. With increasing fertilizer doses higher sulphate content was detected in soil, but the sulphate content measured in different soil extractant is not enough for the wheat in this experiment area. Studying the correlation between the measured parameters of plant and soil, it can be concluded, that the relationships between nitrogen in the plant and in the soil is stable, and did not change during the growing season. The correlation between plant S and soil S varied in the measured periods and the r value was low in most cases. At the stage of flowering the highest r value was found between KCl-SO4 and plant S. In the stage of ripening the strongest correlation was detected between KH2PO4-SO4 and grain S content.

  • Change of soil nitrogen content in a long term fertilization experiment
    39-44
    Views:
    136

    The most important aim of sustainable agriculture is to ensure our natural resources – such as soils – protection, which includes fertility preservation and the use of appropriate methods of cultivation.

    If we want to get accurate information about the occurred changes, way and danger of changes, we should track the resupply and effect of the mineral nutrients and the removed quantity of nutrients with the harvest.

    Nitrogen is an essential element for living organisms and it is present in the soil mainly in organic form. In general only a low percentage of the total nitrogen content can be used directly by plants in the soil. The mineral nitrogen is incorporate by plants into our bodies. This inorganic nitrogen is produced by the transformation of organic contents through mineralization processes and it gets into the soil by fertilization. This is how nitrogen turnover occurs when mineral forms become organic and organic forms become mineral.

    The objective of this publication was to introduce – through some element s of nitrogen turnover- how changing the properties of soil in a long term fertilization experiment.

    We established that the fertilization is influenced the soil pH. With the increase of fertilization levels increased the acidity of the soil, maybe it is related with the number of nitrification bacteria. The fertilization and the rotation affected to the quantity of nitrate.

  • Correlations of the growth indexes and yield of winter wheat in a long-term experiment
    139-144
    Views:
    135

    The experiments were carried out at the Látókép experimental station of the Centre for Agricultural Sciences of University of Debrecen on chernozem soil in a long term winter wheat experiment. As forecrop rotation, we set up two models: a biculture (wheat and corn) and a triculture (pea, wheat and corn). We applied three levels of nutrients during the fertilization process (control, N50P35K40 and N150P105K120). The third variable studied was irrigation in case of which we tested non-irrigated variables (Ö1) and irrigation variables complemented up to the optimum (Ö3).

    The effect of pre-crops, irrigation and nutrient-supply levels on some growth-parameters (LAI, LAD), weight of dry matter, just as SPADvalues and yield amounts of winter wheat has been investigated in this experiment. We tried to find out the extent of relationship between the different parameters, and we used the correlation analysis. The correlation analyses have confirmed that all of the investigated parameters had almost in all cases close positive correlation to the yield amount. These results have confirmed that the leaf area, the leaf duration, the SPADvalues, the fertilization and the forecrop have altogether resulted in the production of maximum grain yields.

  • The influence of fertilization on the soil characteristics of a calcareous chernozem in a long term experiment
    47-52
    Views:
    75

    In the long term fertilization experiment of the University of Debrecen, Centre for Agricultural and Applied Economic Science(CAAEC) (Debrecen Látókép), the effects of a 25-year-long fertilization were examined in terms of some chemical and microbiological properties of soil. With the growing doses of fertilizers, the available nutrient content of soil increased. At the same time the pH significantly decreased, while the hidden acidity increased. Moreover, the ratio between the soil bacteria and microscopic fungi, and the occurrence of microbes also changed. The number of sensitive physiological bacteria groups decreased dramatically. These changes indicate the reactions of living organisms; they correspond to the „resistance stage” of stress effects, but in the case of nitrifying bacteria, they reach the „exhaustion stage”.

  • Effect of fertilization on the potentially mineralize N forms of soil of long term field experiment was set in an acidic sandy soil
    20-24
    Views:
    120

    The aim of this paper was to provide further information about the nitrogen mineralization processes of soil. A modified incubation technique was applied to establish the amount of easily soluble mineral and organic N forms during the incubation period. An acidic sandy soil was used for incubation, which was sampled from the „Westsik” long-term field experiment. The incubation was carried out on fifteen selected soil samples which were received different treatments since the experiment was set up. 
    From the obtained results, the amount of potentially mineralizable N and the mineralization rate constant were determined. Results of chemical analysis and biological interpretation of results are discussed.

  • Effect of agrotechnical factors on the activity of urease enzyme in a long term fertlization experiment
    43-48
    Views:
    126

    The soil is a natural resource, the fertility preservation is an important part of the sustainable development. We have to monitor the transformation dinamics of the organic nitrogen-containing substances, to get accurate information about the changes of the nitrogen cycle in the soil.

    Physical and chemical properties of the soil and the microorganism effect on the organic matter in the soil – in addition to the composition of organic matter. Wide variety of extracellular enzymes are present in this decomposition. These enzymes help in the transformation of the macromolecules to transforming low molecular weight compounds so they will be available during the assimilation.

    The urease enzyme, catalyzes the hydrolysis of urea to CO2 and NH3. The urease is widely spread in the nature, it is present in the microorganisms, plants and animals.

    We found that the soil moisture content, the rotation and the fertilization affect to the amount of urease in spring. Furthermore, we get significant difference between the irrigated and non irrigated samples in the second period of the year. Based on our results we can state that the activity of urease was higher in spring 2014.

    The objective of our study was to present how the different agronomic factors affect on the activity of urease in a long term fertilizationexperiment.

  • Change of mineral and organic nitrogen forms in a long term fertilization experiment (literature)
    43-47
    Views:
    112

    The research topic has timeliness, since the rational utilization and protection of the soil, besides the conservation of its diverse functions is part of the sustainable development. Research of the long-term experiments is esentially important, because it can model the term effects in the same place, under the same conditions. If we want to get accurate informations about the occured changes, way and danger of changes, we should track the resupply and effect of the mineral nutrients and the removed quantity of nutrients with the harvest. Nitrogen is an essential element for living organisms, it is present in the soil mainly in organic form. In general only only a low percentage of the total nitrogent content can be used directly by plants in the soil. This inorganic nitrogen is produced by the transformation of organic contents through mineralization processes and it get into the soil by the fertilization. The plants incorporote the mineral nitrogen into our bodies. This is how nitrogen turnover is realized when mineral forms become organic and organic forms become mineral.

    The purpose of our paper is to make a literature before our research.

  • The effect of long-term fertilization on phosphorus content determined in different soil extractants on meadow chernozem soil
    7-11
    Views:
    66

    The 0.01 M CaCl2 universal extractant is known all over Europe since the 90’s. During my research, I exam the phosphorus content determined in 0.01 M CaCl2 of the samples originated from the B 17 National Uniformed Long Term Fertilisation Trials in the experimental site Karcag, in the 40th year of the experiment. Relationships between the CaCl2-P and the AL-P content of the soil, the average yields, and the phosphorus balance of the
    2006/2007 year were studied. From the results of the study it was concluded as follows:
    – Correlation was close (r=0.68-0.7) between the AL-P and CaCl2-P. This is in accordance with the results of previous experiments in Hungary and other countries.
    – My studies confirmed that the calcium-chloride method indicates well the deficiency and the surplus of plant available phosphorus. In case of different degrees of negative balance, the amount of CaCl2 extractable phosphorus showed no changes, or decreased, and in case of positive balance it increased exponentially by the long-term effect of P rates.
    – The 120 and 180 kg ha-1 rates resulted in significant increases in the amount of CaCl2-P according to the control and treatments that are not fertilized with phosphorus. The 60 kg ha-1 rate didn’t result any increase as it didn’t meet the phosphorus requirement of winter wheat, and presumably the P-balance was negative in the earlier years as well.
    – It can be stated that the 0.01 M CaCl2 was able to assess the deficiency and the excess of phosphorus causing negative impacts on environment as well.

  • Energy crops on less favoured (alkaline) soil
    115-118
    Views:
    99

    The reduction in fossil energy and row material sources induces growing demand for renewable resources. The growing demand for herbal raw materials has land use impacts as well. One way to reduce the conflict between the food and energy crops can be the utilization of less favored areas by growing energy crops. Among the potentially available areas for this purpose the salt affected soils (SAS) occupy a significant territories. SAS with structural B-horizon (meadow solonetz soils) represent the most wide spread group of SAS in Hungary. About half of these soils have been reclaimed and used as arable land and the remaining 50% are used as grassland. Sweet sorghum production for manufacturing of alcohol production was investigated in a long term amelioration and fertilization experiment on a salt affected soil (meadow solonetz). By means of regression analyzes the effect of sodium content of the soil and increasing mineral fertilizer doses were studied. According to the multiple regression analysis only the effect of nitrogen fertilizer was significant. On the solonetz type salt affected soil the effect of water soluble salt content of the soil was not significant, but there was a closer correlation between the ammonium-lactate sodium content and the yield of sweet sorghum. The maximum green mass was 45–50 t ha-1, in the case of low Na content and high level of nitrogen fertilization.

    In order to quantify the potential yield of natural grass vegetation the relationship between the soil forming processes and the grass vegetation
    was investigated. Beyond the different forms of Na-accumulation, the spatial pattern (mosaic-like characteristic) is also an inseparable feature of salt affected soils. The difference in the water regime, caused by the micro-relief is the main cause of variability. The run-on water keeps the deeper parts of the catena position wet longer. The wet situation causes more intensive leaching. In the low-laying parts of salt affected soils species preferring wet situations (mainly Alopecurus pratensis) are in majority. On the higher parts of the micro-relief species tolerating dry situations (mainly Festuca  pseudovina) are dominant. The yearly grass production of low laying areas can be 4–7 t ha-1 but because of prolonged wet  conditions the grass is not grazed and mowing can only be in old state. This old grass is not proper for feeding, but it may be suitable as energy plant. 

  • Evaluation some important microbiological parameters of the carbon cycle in chernozem soils profiles
    33-39
    Views:
    154

    Some chemical and microbiological properties of the carbon cycle were investigated in three chernozem soil profiles. The soil profiles originated from a long term fertilization experiment (potato) of the University of Debrecen, Látókép, Kryvyi Rig Botanic Garden (grassland) and a large-scale farm (sunflower) of Ukraine. The results of the organic C-content, total number of bacteria, microscopical fungi, cellulose decomposing bacteria, CO2-production, microbial biomass carbon and saccharase and dehydrogenase activities were compared and evaluated with the help of correlation analyses. Close correlation was found between the organic carbon content and the number of microscopical fungi,, saccharase and dehydrogenase enzymes’ activities, as well as close correlation was found between the dehydrogenase activity and microbial biomass-C and saccharase activity.