Search

Published After
Published Before

Search Results

  • Use of essential trace elements enriched Artemia in the larval rearing of barramundi (Lates calcarifer)
    11-16
    Views:
    160

    Artemia is a vital nutriment in the rearing of barramundi (Lates carcarifer), however it’s mineral trace element content does not cover the requirements of the larvae. In our experiment the assumption was wether the cobalt, zinc and manganese concentration of Artemia could be increased during a 24 hours of enrichment period, as well as we wanted to investigate the resulted interactions between the elements. For this purpose 50, 100 and 1000 mg l-1 cobalt-chloride treatements (Co50, Co100, Co1000) were applied while in the case of 50 and 100 mg l-1 treatments the enrichment was also complemented with zink-sulphate and manganese-chloride in the same concentrations. According to the results the zooplankton were able to accumulate cobalt in higher amount, and yet zinc and manganese had no significant effect on each other, a strong synergistic effect occurred between cobalt and manganese. After the enrichment period the impact of essential trace element supplemented live feed on the survival and growth of barramundi larvae was also studied. The experiment was carried out by using 15 days-old larvae applying a total of 9 treatments for two weeks (Control, Co50, Co100, Mn50, Mn100, CoZn50, CoZn100, CoMn50, CoMn100), in duplicates. Considering the per cent of survivals, no significant difference was observed between the treatements (P>0.05). In the case of CoMn50 and CoMn100, the loss statistically increased (P<0.05) compared to the Control (80.5±4.95%) group. Our results show, that the Mn100 and CoMn100 treatements resulted in  ignificantly higher (P<0.05 ) in divid ual bod y w eight s, how ever taki ng the survival also into consideration the Mn100 treatements proved to be the most
    effective.

  • The effect of cobalt-chloride on the production parameters and homogenity of barramundi (Lates calcarifer) larvae
    21-25
    Views:
    192

    Barramundi (Lates calcarifer) is a predatory fish species native in Southeast Asia and Australia. Based on the geothermal potentiality of Hungary the high market potential warm-water fish barramundi can be produced economically. Living nourishment organisms such as Artemia nauplii play an essential role in the larval rearing of barrramundi. However, zooplanktons in natural aquatic enviroments contain minerals in a higher concentration than the usually fed newly hatched Artemia. Therefore the goal of recent study was to investigate the effect of cobaltchloride on the larval growth and survival of barramundi when fed individually and combined with Zn and Mn supplemented Artemia.

    In our experiment a 24 hours period was used for the enrichment of newly hatched Artemia nauplii with cobalt chloride in itself, as well as in combination with zinc sulphate and manganese chloride. A total of 1900 barramundi larvae from 15–30 day post hatching were fed with supplemented Artemia in 9 groups of treatments in duplicate. The growth performance and elemental concentration of 40 larvae from each group was determined. All the groups produced significantly improved growth compared to the control (p<0.05). The lower concentration of individual Co supplementation resulted in a higher growth performance while the opposite dose relation occured when combined the Co with Mn. Cobalt had a significant negative effect on the Mn uptake of the larvae – significantly higher Mn accumulation compared to the control group was only observed when Mn was fed in itself (p<0.05). In case of Co-Zn-1 and Co-Zn-2 treatments significantly higher Zn concentration was measured than in the others (p<0.05).

  • The use of essential trace elements in the juvenile rearing of barramundi (Lates calcarifer
    33-38
    Views:
    218

    Barramundi (Lates calcarifer L.) is a predatory fish species native in Southeast Asia and Australia. Based on the geothermal potentiality of Hungary the warm-water fish can be reared successfully. Zooplankton in the wild contains minerals in a higher concentration than the usually fed newly hatched Artemia nauplii, therefore essential trace elements, such as cobalt, zinc and manganese play an important role in the larviculture of barramundi. Cobalt is vital in trace amount for many living functions of vertebrates, however, lower number of papers are available considering the nutritional aspects. Nevertheless. improved growth performance was observed in cases of some fish species when diet was supplemented with CoCl2. Zinc and manganese are also vital for optimal growth and accordingly are investigated and applied diet supplements in aquaculture.

    The main aim of the recent study is to investigate the effects of cobalt, manganese and zinc on the growth performance and homogeneity of fish when a commercially available dry diet is supplemented with trace elements individually and in combined treatments. A total of 6 treatments were set in a randomized blocked design where the concentrations of the applied elements were 50 mg kg-1 for CoCl2, for ZnSO4 and for MnCl2 individually, as well as for CoCl2 along with ZnSO4 and for CoCl2 along with MnCl2 in combination. Although the production parameters of larval barramundi were positively affected by the addition of trace elements when the retention of minerals occurred through nourishment living organisms, statistically no differences were found between the treatments considering the growth performance of barramundi juveniles either when dry feed was supplemented with cobalt, manganese or zinc (p>0.05). While the use of cobalt and manganese in combined treatments produced a less uniform larvae in size and as a consequence of increased heterogeneity, survival was significantly reduced by the cannibalism, the sizes distribution of barramundi juveniles wasn’t affected by the dry diet supplementation of these elements.

  • The effects of the nanoselenium supplementation to the production parameters and the selenium retention of the red drum (Sciaenops ocellatus)
    43-48
    Views:
    268

    The selenium is an essential trace element with antioxidant effect, constituent of many enzymes, natural component of the body of the animals. The addition to the fish feed as micro element supplementation is generally accepted. Numerous animal experiments veryfied, that the antioxidant effect of the nanoselenium is higher than other selenium forms. But no much information is available of the usuage at fish.

    In the experiment were investigated the effects of the nanoselenium supplementation of a commercial fish feed were investigated to the production parameters and the body tissue composition. The correlation between the accumulated selenium content of the body and the treatment, and the feed conversation was also statistically analyzed beside the production parameters. Furthermore we were curious, if can be toxic the nanoselenium in higher doses.

    The experimental stock was placed into 12 plastic tanks (each 70 l water vol.) in a recirculation system for larval rearing. The salinity and the water temperature was constant during the 8 week long experiment. The feeding was ad libitum, 4 times a day. Beside the control five (1, 1.5, 2.5, 5.5, 10.5 mg Se kg-1) duplicated treatment were set.

    According to the results, from the production parameters only at the value of FCR and the survival was found significant difference (p<0.05) between the groups. However strong correlation (r=0.752–0.780, p<0.01) was determined between the treatment and the accumulated selenium levels. To analyzed the free fatty acid contentof the fish, we realized, that the selenium uptake significanly enhanced this level at all treatments. The greatest change was found in case of the type n-3 fatty acids.

    Established by the results, the higher intake than 0.5 mg Se kg-1 was not changed significantly the production parameters, nevertheless to increase the selenium content of commercial feeds to 1.5 mg Se kg-1 could be rewarding on the rearing of red drum.

  • Optimizing fish structure in angling ponds focusing on white fish
    33-36
    Views:
    177

    According to new amendments of laws, commercial fishing licenses of natural waters shall not be issued from the calendar year 2016 in Hungary. However, the most settlement of white fish to angler ponds originated from natural waters. Currently, there is no sufficient quantity of fish species belonging to this group available to fulfil the settlement commitments of fish farmers. The aim of this recent study is to develop a breeding and production technology that is suitable for settlement of large quantities of this fish species of appropriate length of (4–5 cm). The following methods are investigated: aquaculture cage system (pond-in-pond system), monoculture and mixed population with different ratio of white fish in fish structure. Due to the different environmental needs of different fish species, many parameters need to be investigated, for example: stocking density, feeding, oxygen level, monoculture or mixed populations, growth potential and mortality. A preliminary experiment was carried out following the artificial propagation of ide (Leuciscus idus) following a 21-day larval rearing experiment in which the effect of different stoking density was investigated for mortality and growth. On the basis of the expected results, the optimal conditions for the aquaculture cage system will be described, regarding to the white fish stock.