Search

Published After
Published Before

Search Results

  • The Legal Rules Pertaining to Land Protection in Hungary
    324-331
    Views:
    83

    Buildings in industry, mining, transportation and for personal and commercial activities cover increasingly more valuable agricultural land. The increase of sub-urbanization and vehicular traffic and the spread of malls and other kinds of investments are causing serious harm for not only to human society, but to a whole national economy as well.
    The law on agricultural land (1994:LV) contains legal rules for the preservation, use and classification of agricultural land. These rules define the temporary or permanent use of land for agricultural and non-agricultural purposes; the scale of the land-protection fee and the rules of the process on cases in which land is used for non-agricultural purposes without the consent of the land registry. In the field of land classification, the law prescribes the regulations which are to be followed in order to define the net income of agricultural land in Golden Crowns.
    Hungarian land protection rules are unique in the European Union, because only few member-states have similar laws to ours. Community law does not regulate the member states, except in the case of land classification, because this is the basis of the tax paid on the agricultural lands, but even here, there are differences among the states.

  • Marginalisation and Multifunctional Land Use in Hungary
    50-61
    Views:
    74

    Our study prepared as a brief version of National Report in the frame of EUROLAN Programme. We deal with the interpretation of some definitions (marginalisation of land use, multifunctionality of land use, marginalisation of agriculture, multifunctionality of agriculture), with sorting and reviewing indicators of marginalisation and finally with the analysis of functions of land use. We suggested a dynamic and a static approach of marginalisation. We can explore the dynamic process by time series and the static (regional) one by cross-section analyses.
    It is very hard to explain the perspective of the future of marginalisation of land and of agriculture in Hungary. The process of marginalisation seems faster in the agriculture in the coming years, but it depends on the utilisation of new possibilities given by the EU financial resources and by the Common Market. At this moment agriculture seems one of the big losers of the accession.
    In the long term we should face considerable challenges in the land use. It is necessary to take into account that there is a supply market of foods and traditional fibre production world-wide. There are limited possibilities to produce and to market for example biodiesel (fuel), bioethanol, or maybe biogas. Thus the environment and landscape preservation becomes more and more real land use alternatives.
    The environmental interpretation of the multifunctionality of land use: activities (functions) of environmental preservation and nature conservation in a certain area, which aim to preserve natural resources by the existing socio-economic conditions.
    Preservation of rural landscapes is the task mainly for land-users, who can be commanded by legal means and can be encouraged by economic measures to carry out the above activity. In the recent past measures of „command and control” type regulation were predominant, however nowadays, especially in the developed countries, the role of economic incentives increases.
    As a conclusion of our analysis we can state that as long as the main land-dependent activities (agriculture, forestry, housing, tourism, local mining) cease to be viable under an existing socio-economic structure, then it is hardly possible to sustain the rural landscape on an appropriate level by non-commodity products (such as environment preservation, cultural heritage, nature conservation, employment etc.).
    1 The study was prepared in the frame of EUROLAN (EU-5 Framework Project), QLK5-CT-2002-02346, as a compiled version of the Hungarian National Report, The national project co-ordinator: Prof. Dr. Gabor Szabo.
    A part of places with high ecological values coincides with the areas with unfavourable agricultural endowments and underdeveloped micro-regions. We think so that the marginalisation preserves the non-environmental-sound activities and hinders the development of multifunctional agriculture and this process can change only by joint utilisation of endogenous and exogenous resources and methods. Thus the successful programmes for agri-environmental protection and multifunctional land use can serve the moderation of negative effects of marginalisation or maybe the marginalisation process itself.

  • Urgent agricultural issues of soil protection
    169-172
    Views:
    141

    The primary aim of this study is to draw attention to the importance of legal problems of soil protection. The basis for my study is the ombudsman’s 2016 principle of soil protection. This resolution summarizes the most pressing soil protection measures in 15 points that need to be taken as soon as possible to preserve soil resources. To narrow the wide range of topics, I will examine three points: (1) preservation of soil resources, (2) soil sealing, (3) brownfield instead of greenfield. Hungary is in a special position concerning this most ancient natural resource, as only 11% of all the land covered area of Earth consists of soil, the EU average is less than 30%, while in Hungary it is more than 60%. Despite the existing protective legal requirements, soil degradation is a constant issue. The persistence of population growth spells the need for more arable land, but as a result of the stressful impacts caused by people we are running out of useable topsoil.

    Assessing both the short and long term process of land reclamation, it can be stated that more and more farmland becomes permanently and imperviously covered for other purposes each year, and as the arable land area decreases, the impervious surface area grows despite all respective decisions, regulations and prohibitions.

  • Ecological Conditions of Agricultural Land Use in Transcarpathia
    190-194
    Views:
    64

    The unbalanced anthropogenic effects for several decades resulted in significant technogen damages in the ecosystem of Ukraine. Excessive land development, including the use of slopes, effected the disintegration of the natural balance of lands – arable-lands, meadows, forests, and watershed areas – producing quite a negative effect on the landscape’s nature itself. It has to be stressed that according to other indexes, too, agricultural lands show a tendentious deterioration.
    Erosion, caused by water and wind, is one of the most influential factors in the degradation of agricultural soils and in the reduction of the productiveness of benefital lands. Nowadays the degree erosion became significant and it directly endangers the existence of the soil which is a principal chain-link of the agricultural cultivation as well as an irreplaceable element of the biosphere.
    The social and political changes in Ukraine’s life demand fundamental modernization in the land utilization both in ecological and in economical aspects. However, these aims can be realized only if, during the developments, we base on the up-to-date results of agronomics, and we do further research in the relations of agricultural land use and environmental protection. According to the latest theories, rational and environmental-safe agricultural production relates to the optimum correlation of the natural- and agricultural- ecosystems as well as to the reconstruction of agricultural areas built on the basis of environmental protection.

  • Assessment of Environmental Susceptibility/Vulnerability of Soils
    62-74
    Views:
    84

    Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
    The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
    Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
    Soil resources are threatened by the following environmental stresses:
    – soil degradation processes;
    – extreme moisture regime;
    – nutrient stresses (deficiency or toxicity);
    – environmental pollution.
    Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
    The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
    The efficient control of these processes necessitates the following consecutive steps:
    • registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
    • evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
    • assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
    • elaboration of efficient technologies for the „best” control alternatives (best management practice).
    Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
    Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
    The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

  • The Importance of Environmental Research of the Great Hungarian Plain
    9-16
    Views:
    64

    The research of the Great Hungarian Plain has been going on for a long time and there are a lot of information could be used by environmental protection too. The connection between the two topics are diversified, that is why it is necessary to choose a few subject to explain. The chosen subjects are:
    The protection of the geological media cannot be solved, either practically and legally, with the protection of the separated elements of that, just if we see it as a system.
    The prevention, which is the most effective (and also the most inexpensive) way of environmental protection, can be supported by the compilation of vulnerability- and risk maps (i.e. risk of inland water, erosion vulnerability, deflation vulnerability, contamination sensibility).
    Survey on the environmental state containing indispensable geological information for the optimal land use and country planning of a region, county or settlement.
    Marking out of the possible areas for waste depositing.

  • Usage of Different Spectral Bands in Agricultural Environmental Protection
    123-126
    Views:
    80

    Hyper and multispectral imaging systems are widely used in agricultural and environmental protection. Remote sensing techniques are suitable for evaluating environmental protection hazarsd, as well as for agriculture resource exploration. In our research we compared aerial hyper and multispectral images, as well as multispectral digital camera images with the background data from the test site. Hyperspectral records were obtained using a new 80-channeled aerial spectrometer (Digital Airborne Imaging Spectrometer /DAIS 7915/. We have chosen two farms where intensive crop cultivation takes place, as test sites, so soil degradation and spreading of weeds can be intensive as a result of land use and irrigation. We took additional images of air and ground with a TETRACAM ADC wide band multispectral camera, which can sense blue, green and near infrared bands. We had detailed GIS database about the test site. Weed and vegetation map of the area in the spring and the summer was made in 2002. For soil salt content analysis, we gathered detailed data frome an 80x100 m area. When analyzing the images, we evaluated image reliability, and the connection between the bands and the soil type, pH and salt content, and weed mapping. In the case of hyperspectral images, our aim was to choose and analyze the appropriate band combinations. With a TETRACAM ADC camera, we made images at different times, and we calculated canopy, NDVI and SAVI indexes. Using the background data mentioned above, the aim of our study was to develop a spectral library, which can be used to analyze the environmental effects of agricultural land use.

  • New challenges in soil management
    91-92
    Views:
    189
    Soil management represents two important tasks that are harmonization of the soil protection with demands of the crop to be grown on the given land under prevailing farming condition. Further goals are to preserve and/or develop the soil physical, biological and chemical condition and to avoid the unfavourable changes of the soil biological activity and the soil structure. Classical authors emphasised the importance of creating proper seedbed for plants. In the physical approach, tillage was believed to play an important role in controlling soil processes. Consequently, the period of several centuries dominated by this approach is referred to as the era of crop-oriented tillage (Birkás et al., 2017). The overestimation of the importance of crop requirements resulted in damaging the soils, which inevitably led to turn to the soil-focused tillage. Since the first years of climate change, as the new trends have raised concern, tillage must be turned into a climate-focused effort with the aim of reducing climate-induced stresses through improving soil quality.
    The development of soil management has always been determined by the economical background. At the same time, deteriorating site conditions have contributed to the conception of new tillage trends by forcing producers to find new solutions (e.g. dry farming theory in the past or adaptable tillage theory nowadays). Győrffy (2009) recited the most important keywords were listed in 2001 and that seemed to be important in the future of crop production. These keywords (endeavours) were as follows:
    − Biofarming, organic farming, alternative farming, biodynamic farming, low input sustainable agriculture;
    − Mid-tech farming, sustainable agriculture, soil conservation farming, no till farming, environmentally sound, environmentally friendly, diversity farming;
    − Crop production system, integrated pest management, integrated farming, high-tech farming;
    − Site specific production, site-specific technology, spatial variable technology, satellite farming;
    − Precision farming.
    Győrffy’s prognosis proved to be realistic and the efforts mentioned above have mostly been implemented. New challenges have also appeared in soil management in relation to the last decades. The most important endeavours for the future are:
    1) Preserving climate-induced stresses endangering soils.
    2) Turn to use climate mitigation soil tillage and crop production systems.
    3) Applying soil management methods are adaptable to the different soil moisture content (over dried or wet may be quite common).
    4) Use effectual water conservation tillage.
    5) Use soil condition specific tillage depth and method.
    6) Adapting the water and soil conservation methods in irrigation.
    7) Preserving and improving soil organic matter content by tillage and crop production systems.
    8) Considering that stubble residues are matter for soil protection, humus source and earthworm’ feed.
    9) Site-specific adoption of green manure and cover crops.
    10) Applying site-adopted (precision) fertilization and crop protection. Considering the development in agriculture, new endeavours will occur before long.
  • Economic questions of precision maize production on chernozem soil
    293-296
    Views:
    122

    It is one of the main topical objective to establish the conditions of sustainable farming. The sustainable development in crop production also calls for the harmony of satisfying human needs and providing the protection of environmental and natural resources; therefore, the maximum consideratio of production site endowments, the common implementation of production needs and environmental protection aims, the minimum load on the environment and economicalness. Precision farmin encompasses the farming method which is adjusted to the given production site, the changing  technology in a given plot, the integrated crop protection, cutting edge technologies, remote sensing, GIS, geostatistics, the change
    of the mechanisation of crop production, and the application of information technology novelties in crop production. Modern technology increases efficiency and reduces costs. The efficiency of crop production increases by reducing losses and the farmer has access to a better decision support information technology system. In addition, we consider it necessary to examine the two currently most important economic issues: “is it worth it?” and “how much does it cost?”. During the analysis of agricultural technologies, we used the precision crop production experiment database of KITE Zrt. and the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen.
    During our analytical work, we examined three technological alternatives on two soil types (chernozem and meadow). The first technology is the currently used autumn ploughing cultivation. We extended our analyses to the economic evaluation of satellite navigationassisted ploughing and strip till systems which prefer moisture saving. On chernozem soil, of the satellite-based technological alternatives, the autumn ploughing cultivation provided higher income than strip till. In years with average precipitation supply, we recommend the precision autumn ploughing technological alternative on chernozem soils in the future. On meadow soil, the strip till cultivation technology has more favourable economical results than the autumn ploughing. On soils with high plasticity – considering the high time and energy demand of cultivation and the short amoung of time available for cultivation – we recommend to use strip till technologies. 

  • Modelling forestation alternatives
    35-41
    Views:
    177

     

    Agroforestry systems are part of the history of the European Union rural landscapes, but the regional increase of size of agricultural parcels had a significant effect on European land use in the 20th century, thereby it has radically reduced the coverage of natural forest. However, this cause conflicts between interest of agricultural and forestry sectors. The agroforestry land uses could be a solution of this conflict management. One real – ecological – problem with the remnant forests and new forest plantation is the partly missing of network function without connecting ecological green corridors, the other problem is verifiability for the agroforestry payment system, monitoring the arable lands and plantations.

    Remote sensing methods are currently used to supervise European Union payments. Nowadays, next to use satellite imagery the airborne hyperspectral and LiDAR (Light Detection And Ranging) remote sensing technologies are becoming more widespread use for nature, environmental, forest, agriculture protection, conservation and monitoring and it is an effective tool for monitoring biomass production.

    In this Hungarian case study we made a Spatial Decision Support System (SDSS) to create agroforestry site selection model. The aim of model building was to ensure the continuity of ecological green corridors, maintain the appropriate land use of regional endowments. The investigation tool was the more widely used hyperspectral and airborne LiDAR remote sensing technologies which can provide appropriate data acquisition and data processing tools to build a decision support system.

  • Baking quality of winter wheat (Triticum aestivum L.) in the long-term experiments on chernozem soil
    152-156
    Views:
    69

    Agriculture has traditionally an important role in Hungarian economy and rural development. About 75 % of Hungary’s total territory
    is under agricultural land use. Because of ecological conditions and production traditions cereals (wheat, maize etc) have the greatest
    importance in Hungarian crop production. In the 1980’s the country-average yields of wheat were about 5,0-5,5 t ha-1 („industrial-like”
    crop production-model). In the 1990’s the yields of wheat dropped to 4,0 t ha-1 because of low input-using and wide application of the issues
    of environmental protection and sustainability. Winter wheat production for quality has a decisive role in certain regions of Hungary
    (eastern and middle-parts).
    The quality of wheat is complex and different. Three major growing factor groups determine the quality of winter wheat: genotype,
    agroecological conditions and agrotechnical factors. In wheat production for quality the selection of the variety is the most important
    element. Our long-term experiments proved that the quality traits of a variety means the highest (maximum) limit of quality which could not
    be exceeded in fact. During the vegetation period of wheat the different ecological and agrotechnical factors could help or on the contrary
    could demage the quality parameters of wheat.
    The agrotechnical factors determining the baking quality of wheat can be divided into two groups: the first group means the factors with
    direct effects on quality (fertilization, irrigation, harvest); the second group contains the elements with indirect effects on quality (crop
    rotation, tillage, planting, crop protection).
    Appropriate fertilization could help to manifest the maximum of quality parameters of a wheat genotype and could reduce the qualityfluctuation
    in unfavourable ecological and agrotechnical conditions.

  • Fusarium culmorum isolated from rhizosphere of wooly cupgrass (Eriochloa villosa) in Debrecen (East Hungary)
    93-96
    Views:
    143

    Wooly cupgrass (Eriochloa villosa) is an East-Asian originated weed species and it has been spreaded worldwide by now. The first occurrence of this species in Hungary was observed and published in 2008 nearby Gesztely village (Borsod-Abaúj-Zemplén county, North-East Hungary) than in the summer of 2011 a significant population was discovered next to Debrecen city (Hajdú-Bihar county, East Hungary).

    In 2013 this weed was also reported from Szentborbás village, Somogy county (South-West Hungary). These observations of spreading and its biological features (production of stolons and large number of seeds, moreover herbicide tolerance) indicate that wooly cupgrass (E. villosa) has a great potential of invasiveness, so it may become a hazardous weed not only in Hungary but in all over the world.

    The objective of this study was to identify the fungus which was isolated from wooly cupgrass (E. villosa) root residue samples which were collected after maize harvesting on arable land in late autumn, near Debrecen. The identification of the fungus based on morphological characters of colonies and the features of conidia developed on potato dextrose agar (PDA) plates. After the examination of axenic culture we revealed that the fungus from rhizosphere of wooly cupgrass was Fusarium culmorum. Pathogenicity and/or endophytic relationship between the fungus and wooly cupgrass is still uncertain so pathogenicity tests and reisolations from plants are in progress.

  • Economic questions of maize production on different soil types
    289-292
    Views:
    103

    The requirements and objective of cultivation are in constant change. For example, different cultivation systems are developed for the purpose of soil protection, the preservation of its moisture content and on soils with various precipitation supply or production site conditions. Traditionally, one of the most important cultivation aims is crop needs. Further cost saving in fertilisation and crop protection can only be achieved by reducing the quality and quantity of production or it cannot be achieved at all. Furthermore, the costs can be significantly reduced by means of the rationalisation of cultivation. Energy and working time demand can also be notably reduced if ploughing is left out from the conventional tillage method. The key requirement of economicalness is to perform the cultivation at the optimal date, moisture level and the lowest possible cost.
    Within production costs, the cost of cultivation is between 3–17%, while they are between 8–36% within machinery costs. It is the vital condition the usability of each technological method to progressively reduce costs. Our evaluation work was carried out with the consideration of the yield data obtained from cooperating farms and the experiment database of the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen. Three technological methods (ploughing, heavy cultivator and loosening tillage) were used on several soil types which differ from in terms of cultivability (chernozem, sandy and sandy clay soils) from the economic/economical aspect. We examined the sectoral cost/income relation of maize production as an indicator plant. The maize price during the analytical period was 45 thousand HUF per t. On chernozem soils, the production of maize can be carried out on high income level, while maize production on sandy soils has a huge risk factor. The role of cultivation is the highest on high plasicity soils, since they have a huge energy
    demand and the there is a short amount of time available for each procedure in most cases.

  • The Role and Significance of Soil Analyses in Plant Nutrition and Environmental Protection
    3-8
    Views:
    80

    Hungary has a rich history of soil analyses and soil mapping. Our main tasks today are the preservation of soil fertility as well as balancing the goals of production and environmental protection. The main requirement of agricultural production is to adapt to ecological and economic conditions.
    In a series of consultative meetings in the past seven years, representatives from Central and Eastern Europe have analyzed nutrient management practices in their respective countries. According to a joint memorandum agreed upon in 2000, in the countries awaiting accession, the quantity of nutrients used per hectare is considerably smaller than the Western-European usage targeted through special subsidies. The current low nutrient usage contradicts the principles of sustainability and that of the efficient use of resources, jeopardizing soil fertility.
    In Hungary, the use of inorganic fertilizers underwent a dynamic development, which manifested itself in an almost tenfold usage growth between 1960 and 1985. This growth slowed down somewhat between 1985 and 1990 and then reduced dramatically after 1990, reaching record lows at the usage levels of the 60s. The nutrient supply has had a negative balance for the last 15 years.
    The increasing and then decreasing usage trends can equally be detected in the domestic yield averages of wheat and corn as well as in the nutrient supply of soils. Yields were the largest when usage levels were the highest, and decreased thereafter. Draughts have also contributed to smaller yields. The dramatic decrease in the use of inorganic fertilizers when adequate organic fertilizers are lacking endangers our soils’ fertility.
    About 50% of soils in Hungary are acidic. Acidity is mostly determined by soil formation, but especially on soils with a low buffering capacity, this acidity may intensify due to inorganic fertilizers. Sustainable agriculture requires the chemical improvement of acidic soils. According to their y1 values, the majority of our acidic soils need to be improved. This chemical soil remediation is required in 15% of the acidic soils, while it’s recommended for another 20% of these soils.
    Results of the analyses conducted in the framework of the soil-monitoring system set up in Hungary in 1992 show that in 95% of the analyzed samples, the toxic element content is below the allowable limit. Cultivated areas are not contaminated; toxicity above the legal level was found only in specific high-risk sampling areas: in the vicinity of industry, due to local overload. The basic principle of sustainable agriculture is to preserve soil fertility without undue strain on the environment. The intensity of the production needs to be considered according to the conditions of the site; i.e.; nutrient management needs to be site-specific. It is recommended to differentiate three types of cultivated land in terms of environmental sensitivity: areas with favorable conditions, endangered areas, and protected areas, and then to adopt nutrient management practices accordingly. To meet all the above-mentioned goals is impossible without systematic soil analysis. Tests conducted by the national monitoring system cannot replace regular field measurements.

  • Evaluation of reduced tillage technologies in corn production based on soil and crop analyses
    47-54
    Views:
    123

    Despite new cultivation methods, the proportion of conventionally cultivated land is still very high in Hungary.
    Although these technologies demand more time, labour and fuel, they are still attractive to users because they require less professional skill and simple machinery. In Hungary, conventional tillage methods usually lead to soil deterioration, soil compaction and a decrease in organic content. These side effects have caused gradually strengthening economic and environmental problems.
    The technologies for those plants which are dominant on Hungarian arable lands use (winter wheat, maize, sunflower and barley) need to be improved both in the interest of environmental protection and the reduction of cultivation costs.
    The Department of Land Use at Debrecen University is cooperating with KITE Sc. to carry out soil tillage  experiments at two pilot locations to prove tillage technologies already used in the USA.
    The aim of our examination is to adapt new technological developments and machinery, and to improve them on Hungarian soil for local environmental conditions. With these improved machines, the field growing of plants could be executed by less manipulation and better suited to economic and environmental needs. The most significant task is to investigate and improve the conventional cultivation replacing, new soil-protecting tillage technologies, and to apply no-till and mulch tillage systems.
    On the basis of the experiments’ survey data, we established that the looseness and moisture content of the soil using reduced tillage is more favourable than after using conventional technologies. The results of no-till and shallow spring tillage are behind those of winter plough or disk ripper cultivation in corn yield and production elements.
    To preserve moisture content in the soil, the ground clearing and sowing while simultaneously performing no-till method presents the most favourable results. The surplus moisture gained using no-till technology is equal to 40 mm precipitation.
    Regarding the yield of winter wheat we established that the tillage methods do not affect plant yield. Both disk ripper and conventional disc cultivation showed nearly the same harvest results (5.55 or 5.5 t/ha), where the difference is statistically hardly verifiable from the no-till method. From the individual production of corn and the number of plants planted in unit area,  calculated results prove that no significant difference can be detected between the production of winter plough and disk ripper technology. Although the yield achieved with the no-till method is less than with the previously mentioned technologies, the difference is only 9-10%. We received the lowest production at shallow spring tillage.
    Evaluations have shown a 1.1 t/ha (13%) difference in the yield of maize, between winter tillage and the disk ripper method, in this case the traditional method resulted in higher yield. In winter tillage, the yield of maize was 1.9-2.1 t/ha (23-25%) higher than in the case of direct sowing and cultivator treatments. No significant difference could be noted between the yields of direct sowing and cultivator treatments.
    Our research so far has proved the industrial application of reduced tillage methods in crop cultivation technologies.

  • Establishing regional cultivating districts on the basis of the Kreybig practical soil mapping system
    20-25
    Views:
    87

    With the help of this report evaluating the current situation of the region, characteristics of the development in agricultural production and regional differences can be clarified. By mapping out the regional soil, land use and climatic conditions and organizing these into a geographical information system, one can easily determine which plants are the most ideal to cultivate in that particular region. Moreover, it is a useful tool that enables us to
    establish the most favorable land use structure suited to ecological demands and also helps to determine the methods of soil protection.
    During our work, we chose administrative units in Szabolcs-Szatmár-Bereg County, based on the latest aspects of regional cultivation.
    Our pilot areas are: the small regions of Nyíregyháza, Nyírbátor, Nagykálló, Mátészalka and Csenger.
    Using the database, we separated and uncovered the soil conditions of the pilot areas: the chemical and physical properties of the soil layer which is exploited by the roots of the plants, the humus content, the nutrient supply, the thickness of the cultivated layer and the water management conditions.
    We separated the districts of regional cultivation, where the basic elements of the traditional Kreybig color systems were applied (light yellow, dark yellow, light brown, dark green, blue, pink, red, gray, greenish brown, reddish purple, light purple, dark purple, light green).
    By using the data collected from the pilot areas, we compiled a map database, which is suitable to illustrate the plant cultivating characteristics of the region. We made recommendations to determine the most favorable plants to cultivate in the specific region with the given meteorological and soil conditions, as well as for the shifting of crops.
    Our recommendations were also illustrated in a map with a resolution of 1:25000. 

  • The scientific background of competitive maize production
    33-46
    Views:
    272

    The effect and interaction of crop production factors on maize yield has been examined for nearly 40 years at the Látókép Experiment Site of the University of Debrecen in a long-term field experiment that is unique and acknowledged in Europe. The research aim is to evaluate the effect of fertilisation, tillage, genotype, sowing, plant density, crop protection and irrigation. The analysis of the database of the examined period makes it possible to evaluate maize yield, as well as the effect of crop production factors and crop year, as well as the interaction between these factors.

    Based on the different tillage methods, it can be concluded that autumn ploughing provides the highest yield, but its effect significantly differed in irrigated and non-irrigated treatments. The periodical application of strip tillage is justified in areas with favourable soil conditions and free from compated layers (e.g. strip – strip – ploughing – loosening). Under conditions prone to drought, but especially in several consecutive years, a plant density of 70–80 thousand crops per hectare should be used in the case of favourable precipitation supply, but 60 thousand crops per hectare should not be exceeded in dry crop years. The yield increasing effect of fertilisation is significant both under non-irrigated and irrigated conditions, but it is much more moderate in the non-irrigated treatment.

    Selecting the optimum sowing date is of key importance from the aspect of maize yield, especially in dry crop years. Irrigation is not enough in itself without intensive nutrient management, since it may lead to yield decrease.

    The results of research, development and innovation, which are based on the performed long-term field experiment, contribute to the production technological methods which provide an opportunity to use sowing seeds, fertilisers and pesticides in a regionally tailored and differentiated way, adapted to the specific needs of the given plot, as well as to plan each operation and to implement precision maize production.

  • Global Issues of RangelandManagement
    39-46
    Views:
    99

    Rangelands occupy about 50% of the world’s land area. They are ecologically and economically as important as rain forests and in even greater danger of degradation and disappearance. This paper reviews the definitions and distribution of rangelands and describes their global environmental importance in terms of erosion control, carbon storage and methane emission. Condition and degradation of rangelands are defined and discussed and it is argued that soil protection and carbon storage can be increased and methane emission per animal decreased by conservative use and improvement of rangelands, whilst at the same time alleviating hunger and malnutrition in developing countries. It is concluded that policies should be adopted by national governments and international deve-lopment programs to conserve and improve rangelands.

  • Managing the relationship between natural spawning areas on unprotected floodplains and on protected man-made fishponds
    25-31
    Views:
    59

    The economic land management of unprotected floodplain areas is possible only if considered jointly with protected floodplain areas, for which facility fisheries provide a solution. One solution could be that a part of the natural fish increment of the spawning-grounds on unprotected floodplains be raised in protected side fishponds and then later sold. This kind of fishery utilization is also favourable from economic, conservationist and flood protection aspects.

  • Agronomical and economic evaluation of different soil cultivation systems
    47-52
    Views:
    58

    In the interest of profitable plant production and environmental protection, we have to make an effort to protect and improve the productivity of our soils while moderating production limiting factors. Due to different soil cultivation methods, the quantity of yield and required expenses also differ.
    We examined the production costs in four different production technology systems. Overall, it can be said that farming standards are good, since cost prices were low (2001: 14-15 HUF/kg, 2002:15-21 HUF/kg, 2003: 39-49 HUF/kg) in the case of all main products per 1 kg. Cost prices were lowest in the case of direct sowing, probably due to low machinery costs.
    All economic indicators have to be compared when choosing the most suitable production technology in a specific farming environment.

  • The effect of long-term fertilization on the 0.01 M CaCl2 extractable nutrient content of a meadow soil
    73-79
    Views:
    93

    During my research, I studied the 0.01 M CaCl2 extractable NO3--N, NH4+-N, Norg, P and K contents of the soil samples originated from a long term fertilisation trial in the experimental site Hajdúböszörmény. Relationships among the soil nutrient contents, the agronomic nutrient balances of the 2009 year, and fertilization were studied. 
    From the results of the study it was concluded as follows:
    – Fertilization significantly increased the CaCl2 extractable NO3--N, NH4+-N, and K contents of soil.
    – Norg fraction increased as a function of the increasing yield. Hence, it can be assumed that the greater the produced yield, the more the stubble and root residues remain on the arable land. These organic residues can result significant increase in the Norg content of soils.
    – The CaCl2 extractable P and K contents were compared with the calculated P and K limit values. According to these, the experimental soil has a good phosphorus and lower potassium supply capacity. These results are in accordance with the results of the conventional Hungarian fertilization recommendation system.
    – It can be stated that the 0.01 M CaCl2 is able to determine not just inorganic N forms but Norg fraction as well that characterize the easily mineralizable nitrogen reserves. The results proved that AL-P and -K (ammonium lactate acetic acid, traditional Hungarian extractant) are in good agreement with the P and K reserves, but it is important from the aspect of environmental protection and plant nutrition to measure the easily soluble and exchangeable K-, and P-contents of soil. 0.01 M CaCl2 method is recommended for this.

  • Agronomical and economic evaluation of various cultivation systems on meadow soil
    103-106
    Views:
    102

    The requirements and objectives of cultivation are in constant change. There are different cultivation aims if the objective is soil protection, the prevention of its moisture content or on areas with different precipitation supply or production site endowments. Based on the experimental database of the Institute for Land Utilisation, Regional Development and Technology of the University of Debrecen, Centre for Agricultural and Applied Economic Sciences and the KITE Plc., the various cultivation systems in Hajdú-Bihar country were examined with maize as indicator plant. The sample area can be found in the outskirts of Biharnagybajom on meadow soil. On the examined plot, spring strip basic cultivation, loosening and autumn ploughing were applied on 15-15-15 ha, respectively. At the time of taking undisturbed soil samples, soil conductivity measurements were also performed with a Penetronik penetrometer. Undisturbed soil samples were taken from each treatment before sowing (on 5th April 2012). The yield obtained in the strip cultivation treatment increased that of the ploughing and the loosening technology. The economic indexes are the most favourable in the strip cultivation.

  • Agronomical and Economic Evaluation of Different Soil Cultivation Systems
    17-22
    Views:
    72

    In the interest of profitable plant production and environmental protection we have to make an effort to protect and improve the productivity of our soils while moderating production limiting factors. Due to different soil cultivation methods, the quantity of yield and required expenses also differ.
    We examined the production costs in four different production technology systems. Overall, it can be said that farming standards are good, since cost prices were low (2001: 14-15 HUF/kg, 2002: 15-21 HUF/kg, 2003: 39-49 HUF/kg) in the case of all main products per 1 kg. Cost prices were lowest in the case of direct sowing, probably due to low machinery costs.
    All economic indicators have to be compared when choosing the most suitable production technology in a specific farming environment.

  • Development of a Decision Assisting Soil Information System in Agriculture
    130-133
    Views:
    69

    Hungarian agriculture may be characterized by the industry-like, conventional farming of the past decades. This form of management concentrated exclusively on functions aimed at production. We have to decrease this disproportion, especially when joining to the EU, by reducing the intensive agricultural regions and adjusting to the goals of the 2000-2006 NAEP programmes, forming such an agricultural system which integrates the advantages of both environmental protection and complex agricultural systems based on rational foundations. Nevertheless it’s a rational decision to make the soil information system with an exact spatial informatics background as a foundation of agricultural system, because this promotes easy handling as well the connection to possible subsequent modules.

  • Characteristics of Land Use and Plant Production in Transcarpathia
    290-294
    Views:
    35

    The character of plant cultivation and animal husbandry in different parts of Transcarpathia, are mostly determined by the location of a given region. Usually, four zones are delineated: 1. lowlands; 2. foothills and volcanic remains zone; 3. inter-mountainous subsidence and deep valley; 4. mountain zone.
    In county this zone divides quite visibly. By studying the soil, climatic conditions and plants, it is not difficult to see that the vertical zones play a major role in their characteristics and formations. If we go from lower to higher elevations, we can observe the qualitative difference in the environment and, of course, in the character of agriculture.
    Environmental pollution is a global problem of our age. In agriculture, the most important thing is to preserve the ideas of sustainable development, because only these can ensure the protection of production resources, which will ensure the continuous production of agricultural products. Present environmental conditions pose a more problematic challenge to agriculture.