Search

Published After
Published Before

Search Results

  • The impact of different fertilization methods on some microbiological soil characteristics
    119-126
    Views:
    93

    In our experiment, we studied the impact of an organic fertilizer, Bactofil® A10 (half- and full dosage applied in field practice) and an artificial fertilizer of Ca(NO3)2 content in different dosages (20-40 mg kg-1) – in addition to control treatments – on two different soils (calcareous chernozem, humus sandy soil) in 2005-2006, the experiment was complemented with treatments applying 250% dosage (100 mg kg-1 N, Bactofil® A10 2.5 times the field dosage) and a compost from urban sewage (25 g kg-1 compost) was also tested on these two soil types. In the
    experiment, several soil microbial parameters were studied. The experiment was set up at the Department of Agrochemistry and Soil Science using 1-kg pots.
    Our laboratory experiments were performed at the soil microbiology laboratory of UD CAS Department of Agrochemistry and Soil Science, the total number of bacteria, microscopic fungi, nitrifying and aerob cellulose-decomposing bacteria were determined together with the CO2-production of soil, N content of the biomass and urease enzyme activity.
    Statistical analysis of the data was done using the program SPSS 13.0, means of the measurements, deviation and significance values were calculated. 
    In 2005-2006, the effect of the different dosages of Bactofil® A10, and the Ca(NO3)2 fertilizer on the examined microbial parameters of calcareous chernozem and humus sandy soils can be summarized as follows:
    • Concerning the total number of bacteria, both treatments were effective on calcareous chernozem soil, the higher (significant) increment in bacteria number was observed in the artificial fertilizer treatments, while in the humus sandy soil Bactofil treatments had a beneficial effect. The number of microscopic fungi also increased in both treatments, higher numbers were observed in the average of two years in the Bactofil treatments.
    • The number of nitrifying bacteria was 2.5 times higher in both high-dosage treatments on calcareous chernozem soil, while on humus sandy soil a slight (not significant) increment was observed only int he high-dosage Bactofil treatment. The amount of aerob cellulose-decomposing bacteria significantly increased on calcareous chernozem soil in both the highdosage artificial fertilizer and the small-dosage Bactofil treatment, however, on humus sandy soil no significant increase was observed in either treatment.
    • The CO2-production increased in both soil types, although it was not significant in either treatment. A higher (though not significant) soil respiration was observed in the Bactofil treatments in both soil types.
    • The microbial biomass N values were significantly higher in the high-dosage Bactofil treatments, however, the high-dosage artificial fertilizer treatment also increased these values significantly on calcareous chernozem soil.
    • On calcareous chernozem soil, urease activity was significantly increased and reduced by high-dosage artificial fertilizer treatments and Bactofil treatments, respectively. On humus sandy soil, urease activity was also reduced except for the high-dosage artificial fertilizer treatment. In 2007, the pot experiment with 250% dosages was complemented with the application of compost rich in organic matter, the results of these treatments are sumnmarized as follows:
    • In the case of the total number of bacteria, all three treatments resulted in a significant increase on calcareous chernozem soil with the highest values in the Bactofil treatment. The Bactofil treatment was the most effective on the humus sandy soil, but the artificial fertilizer treatment also
    resulted in a significant increment. In the case of the total number of fungi, Bactofil treatments resulted in the highest values on both soils, but the compost treatment also increased the number of fungi in calcareous chernozem significantly. 
    • The number of nitrifying bacteria was increased most (significantly) by the Bactofil and compost treatments on both soil types. The amount of cellulose-decomposing bacteria was significantly increased by he compost treatment on calcareous chernozem soil, while its effect was not significant on humus sandy soil. The number of these bacteria was increased significantly by the Bactofil treatment on humus sandy soil.
    • On calcareous chernozem soil, all three treatments significantly increased CO2-production, while the compost treatments had the resulted in the largest increment in soil respiration on both soil types.
    • The soil biomass N content was significantly increased in both soils by the compost treatment, while in the case of the humus sandy soil, the Bactofil treatment also resulted in a significant increment.
    • Urease enzyme activity was significantly increased by the artificial fertilizer treatment on both soils. In calcareous chernozem soil, the Bactofil treatment resulted in a slight (not significant) reduction in enzyme activity. In humus sandy soil, the Bactoful treatment also resulted in a slight reduction, while the compost treatment increased (though not significantly) the urease activity.
    Based on our results, it can be stated that all three treatments were effective with respect to the studied soil microbial parameters. For both the calcareous chernozem and the humus sandy soil, the organic fertilizer Bactofil and the compost with high organic matter content had a stronger effect on some soil microbial parameters than the artificial fertilizer.

  • Statistical comparison of soil analysing results of chernozem soils
    93-99
    Views:
    119

    The soil fertility was degraded as a result of unreasonable tillage, therefore the application of site-specific nutrient replacement is necessary. It is essential for the application of precision fertilization to know the location, extension, soil properties and nutrient-supply of the different soil types of
    cultivated areas.
    We collected soil samples from 580 hectares of land in 2006. Soil samples were collected from every 5 ha in 30 and 60 cm depths during Spring from 20.05.2006 to 12.06.2006 and again in Autumn from 09.19.2006 to 02.10.2006. Soil samples were analysed at the Department of Agricultural Chemistry and Soil Science of DE-ATC.
    The two examined soils are slightly calcareous, weakly saline, poor in zinc. The calcareous chernozem soil is slightly acid, the content of humus, nitrogen, phosphorus and potassium is medium in this soil. The meadow chernozem soil is slightly alkaline, and properly supplied with humus and potassium, and middling supplied with nitrogen and phosphorus. The meadow chernozem soil is more heterogenous in soil plasticity, lime, saline, nitrogen phosphorus and potassium content and less heterogenous in pH and zinc content than the calcareous chernozem soil.
    Standard deviation of measured values in pH, soil plasticity, humus and nitrogen content significantly differ between the examined soil types. The soil plasticity, pH, humus, nitrogen and zinc content significantly differ among calcareous chernozem soil and meadow chernozem soil, but the difference in phosphorus content can be statistically proven only in case of Spring soil sampling.

  • Preface
    5
    Views:
    29

    In the frame of a common “Hungarian-Ukrainian Intergovernmental S&T Cooperation Programme” which title is “Change of soils ecological characteristics of Ukraine and Hungary in the conditions of anthropogenic transformed ecosystems and optimization of biological processes of plants primary feeds elements mobilization” a Workshop was held in Debrecen. The member institutes of project participated with different presentation in this program.
    The title of Workshop was: “Anthropogenic effect on the properties of Middle and Eastern European chernozem soils and on the sustainable agricultural production”.
    The aim of the Workshop was to give relevant information about the present situation of the Middle and Eastern European Chernozem soils, especially emphasize the effect of different loading on the quality (properties) of chernozem soils. With the Workshop we would like to create a tradition for discussion about the anthropogenic effect on the soil properties and through it on the productivity of different soils. It was a forum for discussion of research results related to problems and possibilities for prevention of soil quality. With this possibility we would like to contribute to the sustainable agricultural production.
    The papers were read for the publisher and we would like to show them in a separate supplement of Journal of Agricultural Sciences, Acta Agraria Debreceniensis as one of the results of the project.
    The papers comply with the requirements of the scientific issue except those two which show the university and the department of the Ukrainian partner taking part in this project.
    The participant Institutes of the project:
    - Dnepropetrovsk National University, Faculty of Biology and Ecology;
    - Kryvyi Rig Botanical Garden NAS of Ukraine, Plant Physiology & Soil Biology Department;
    - Department of Agrochemistry and Soil Sciences of Centre for Agricultural and Applied Economics;
    - Research Institute of Karcag, Centre for Agricultural and Applied Economics. The collaboration with Ukrainian partners was successful and we have confidence in the further cooperation in scientific research.

  • Identification and specific variety of actinomyces of streptomycetes genus in some chernozems of Ukraine
    67-74
    Views:
    61

    Is definite the quantitative and quality composition of chernozem usual and southern streptomycetes cenosis. It is rotined that humus horizons of chernozem usual more biogenic, than chernozem southern. Analysis of specific structure of streptomycetes association and calculation of some biodiversity indexes by Margalef, Berger-Parker and Serensen it was allowed to set the specific features of forming of these microorganisms cenosis in investigated soils.

  • Economic questions of maize production on different soil types
    289-292
    Views:
    103

    The requirements and objective of cultivation are in constant change. For example, different cultivation systems are developed for the purpose of soil protection, the preservation of its moisture content and on soils with various precipitation supply or production site conditions. Traditionally, one of the most important cultivation aims is crop needs. Further cost saving in fertilisation and crop protection can only be achieved by reducing the quality and quantity of production or it cannot be achieved at all. Furthermore, the costs can be significantly reduced by means of the rationalisation of cultivation. Energy and working time demand can also be notably reduced if ploughing is left out from the conventional tillage method. The key requirement of economicalness is to perform the cultivation at the optimal date, moisture level and the lowest possible cost.
    Within production costs, the cost of cultivation is between 3–17%, while they are between 8–36% within machinery costs. It is the vital condition the usability of each technological method to progressively reduce costs. Our evaluation work was carried out with the consideration of the yield data obtained from cooperating farms and the experiment database of the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen. Three technological methods (ploughing, heavy cultivator and loosening tillage) were used on several soil types which differ from in terms of cultivability (chernozem, sandy and sandy clay soils) from the economic/economical aspect. We examined the sectoral cost/income relation of maize production as an indicator plant. The maize price during the analytical period was 45 thousand HUF per t. On chernozem soils, the production of maize can be carried out on high income level, while maize production on sandy soils has a huge risk factor. The role of cultivation is the highest on high plasicity soils, since they have a huge energy
    demand and the there is a short amount of time available for each procedure in most cases.

  • Impact of ammonium nitrate and Microbion UNC bacterial fertilizer on dry matter accumulation of ryegrass (Lolium perenne L.)
    35-39
    Views:
    80

    Pot experiment was performed to investigate the effects of increasing NH4NO3 doses with or without Microbion UNC bacterial fertilizer
    application on dry matter production of ryegrass (Lolium perenne L.). Experiment was set up on calcareous chernozem soil of Debrecen-Látókép and on humus sandy soil of Őrbottyán. The bi-factorial trials were arranged in a randomized complete block design with four replications. Grass was cut three times. Dry matter production was determined and the sum of biomass of cuts was calculated as cumulated dry weights. Analysis of variance was carried out on the data in order to provide a statistical comparison between the treatment means. The least significant difference (LSD5%) test was used to detect differences between means. On the basis of our results it can be concluded, that the dry weights of ryegrass cultivated on chernozem soil were higher than on sandy soil. With increasing nitrogen supply the dry matter production of grass significantly increased in both types of soils. In case of sandy soil the increasing effect was more expressed, but dry weights of this soil never reached the appropriate values of chernozem soil. Application of Microbion UNC had positive effect on dry matter production of ryegrass grown on both two types of soils but the effect was more expressed on chernozem soil. Finally it can be concluded that the increasing effect of NH4NO3 on biomass weights was more expressed in both types of soils, the biofertilizer application also increased the dry weights of plant in a small degree. 

  • Activity of some enzymes, participating in nitrogen compounds transformation in chernozem, polluted by fluorine compounds
    99-104
    Views:
    86

    Contamination of chernozem by fluorine compounds variously affects those enzymes (urease, asparaginase, glutaminase, arginase, amidase), which takes part in the metabolism of nitrogen-bearing organic compounds. In broken soils the inhibited desaminisations is stronger, than enzymatic hydrolysis of asparagine and arginine. The features of seasonal dynamics of change activity of urease and correlation dependence of its activity from some physical and chemical soils properties are described. These tendencies well comport with the results of model experiments. At minimum HF influence there is inhibition of processes of monohydrocarboxylic acids desaminisation, hydrolytic breaking up of arginine and glutamine. By a side with this there is activating of urea and asparagine breaking up processes on the initial stages of toxicant influence. The study of kinetics of process of urea enzymatic hydrolysis in chernozem at the different level of HF influence showed changes of initial and maximal velocity of enzymatic reaction, and also Michaelis-Menten constant. 

  • Economic questions of precision maize production on chernozem soil
    293-296
    Views:
    122

    It is one of the main topical objective to establish the conditions of sustainable farming. The sustainable development in crop production also calls for the harmony of satisfying human needs and providing the protection of environmental and natural resources; therefore, the maximum consideratio of production site endowments, the common implementation of production needs and environmental protection aims, the minimum load on the environment and economicalness. Precision farmin encompasses the farming method which is adjusted to the given production site, the changing  technology in a given plot, the integrated crop protection, cutting edge technologies, remote sensing, GIS, geostatistics, the change
    of the mechanisation of crop production, and the application of information technology novelties in crop production. Modern technology increases efficiency and reduces costs. The efficiency of crop production increases by reducing losses and the farmer has access to a better decision support information technology system. In addition, we consider it necessary to examine the two currently most important economic issues: “is it worth it?” and “how much does it cost?”. During the analysis of agricultural technologies, we used the precision crop production experiment database of KITE Zrt. and the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen.
    During our analytical work, we examined three technological alternatives on two soil types (chernozem and meadow). The first technology is the currently used autumn ploughing cultivation. We extended our analyses to the economic evaluation of satellite navigationassisted ploughing and strip till systems which prefer moisture saving. On chernozem soil, of the satellite-based technological alternatives, the autumn ploughing cultivation provided higher income than strip till. In years with average precipitation supply, we recommend the precision autumn ploughing technological alternative on chernozem soils in the future. On meadow soil, the strip till cultivation technology has more favourable economical results than the autumn ploughing. On soils with high plasticity – considering the high time and energy demand of cultivation and the short amoung of time available for cultivation – we recommend to use strip till technologies. 

  • Examination of the Binding Forms of Cu, Zn, Pb and Cd
    161-165
    Views:
    27

    Cu, Zn, Pb and Cd binding forms were examined on brown forest soil with clay illuviation, on clcareous chernozem and on meadow soil type. We applied one metal ion and the mixture of all at two different concentrations on the soils. Our results show all the four metal ions significantly bound to the mobile fraction on brown forest soils, while on calcareous chernozem and on meadow soil type they were mainly in other fractions. The higher heavy metal load and the presence of other metal ions increased the ratio of the mobile binding form.

  • Investigation of Chromium(III)-Picolinate Adsorption on Some Soil Types
    190-193
    Views:
    57

    In the experiment adsorption characteristics of different soil types (humic sand, meadow soil, leached chernozem and meadow solonec) was examined on the basis of adsorption isotherms for Cr(III)-picolinate. The Langmuir equation was used to describe the isotherms by which the amounts of metal ions actually and maximally adsorbed by the soils were determined concerning the given complex. A comparison was made among the organically bound Cr(III)-picolinate, an inorganic Cr(III) compound and a Cr(VI) form examined in a previous study. Based on the adsorption isotherms, adsorption capacity of the Cr(III)-picolinate was found 20 times smaller on sandy soil and 50 times smaller on the chernozem comparing to that of the inorganic Cr(III)-chloride, thus, the bio-availability of the chromium for the plants is 20 and 50 times higher in case of the given soil types. For the well-known toxic Cr(VI)-form, the adsorption was 2 times higher in case of sandy soil and 5 times higher for chernozem than in case of the organic Cr(III)-complex compound.

  • Comparative examination of the tillage systems of maize on meadow chernozem soil
    21-24
    Views:
    147

    Maize production plays a major role in the agriculture of Hungary. Maize yields were very variable in Hungary in the last few decades. Unpredictable purchase prices, periodical overproduction, the increasing occurrence of weather extremities, the uncertain profit producing ability, the soil degradation processes (physical, chemical and biological degradation) and the high expenses are risk factors for producers. Due soil tillage, there is an opportunity to reduce these risks. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Centre for Agricultural and the KITE Plc., various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok country in 2012 and 2013. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively.

    In general, our findings show, that strip-tillage and subsoiling can be alternative tillage systems beside moldboard ploughing on meadow chernozem soils in Hungary.

  • Evaluation some important microbiological parameters of the carbon cycle in chernozem soils profiles
    33-39
    Views:
    154

    Some chemical and microbiological properties of the carbon cycle were investigated in three chernozem soil profiles. The soil profiles originated from a long term fertilization experiment (potato) of the University of Debrecen, Látókép, Kryvyi Rig Botanic Garden (grassland) and a large-scale farm (sunflower) of Ukraine. The results of the organic C-content, total number of bacteria, microscopical fungi, cellulose decomposing bacteria, CO2-production, microbial biomass carbon and saccharase and dehydrogenase activities were compared and evaluated with the help of correlation analyses. Close correlation was found between the organic carbon content and the number of microscopical fungi,, saccharase and dehydrogenase enzymes’ activities, as well as close correlation was found between the dehydrogenase activity and microbial biomass-C and saccharase activity.

  • The effect of lead and copper heavy metal salts on soil microorganisms under laboratory circumstances
    55-59
    Views:
    137

    he population dynamics of calcareous chernozem soils polluted with different concentrations of lead and copper heavy metal saline solutions was examined.

    The experiment was carried out in the soil biological laboratory of the Institute of Agricultiral Chemistry and Soil Science at DE AGTC MÉK in 2012. For the determination of the concentration of the undiluted stock solutions we multiplied the smallest toxic concentration values of the MSZ 08-1721/1-86 Hungarian standard by forty. The intermediary concentrations of the treatments were produced with adequate dilution of the stock solutions until a dilution level equal to the values of the standard. The statistical evaluation of the data was performed with ANOVA (Analysis of Variance) including the determination of the standard deviation and significant difference. Investigating the effects of the different treatments on the soil microbes we established that both heavy metal saline solutions had a negative effect on the population dynamics of bacteria and microscopic fungi living in the soils. The negative effect of copper – as a potential toxic micro nutrient – turned out to be less strong than the negative effect of the toxic lead. According to our results the correction of the treatment levels is recommended in order to further tolerance examinations and the determination of the tolerance levels.

  • The effect of crop rotation and fertilization on wheat and maize in the pedoclimatic conditions of the Banat Plain
    14-18
    Views:
    68

    The simplification of the plant cultures range and the yields in the last 10-15 years brings into the actuality the role of crop rotation and
    of fertilization on the yield level and stability for wheat and maize even on the soils with a high natural fertility. The results of the researches
    performed between the years 2006 – 2009 on a cambic low gleyed chernozem from the Banat Plain showed that the wheat cultivated in
    monoculture gives productions with 59-81% lower than that cultivated in crop rotation with other plants during 2-4 years. In maize, the yield
    obtained in monoculture is situated behind that obtained in crop rotation with 11-21%. The most favorable crop rotations for wheat were
    rape-wheat in a 4 years rotation and soybean-wheat in simple rotation of 2 years. In maize, the most favorable was the 2 years rotation
    (wheat-maize). The mineral fertilization was very efficient both in wheat (11-36%) and maize (9-31%). The organic fertilization with manure
    was very efficient for maize, the yields being superior with a mean value by 34% for a 60 t/ha dose and with 16% for 30t/ha. The fertilization
    compensates the negative effect expressed by the monocultivation only in a small measure

  • N-fertilization using „Biofert” in Sustainable Maize Production
    30-33
    Views:
    94

    In synthetic fermentation of lysine (amino-acid) a by-product (Biofert) originates which can be characterized by 6% N-content and other ingredients (vitamins, enzymes, micro-elements etc). In small and large plot experiments Biofert was studied in different agroecological (cropyear, soil), biological (genotypes) and agrotechnical (non-irrigated and irrigated; N-splitting etc) conditions in order to obtain information about agronomic efficiency and environmental effects of its applications.
    Our results proved that Biofert has the same agronomic efficiency as traditional N-fertilizers (applied in equal doses and splitting), but Biofert has economic and environmental advantages (less N-leaching in soils) for maize production. We found a special interaction between N-supply and irrigation. In maize production (irrigation) with the optimum application of nutrient- (N-fertilization, Biofert) and water- supply we could stabilize maize yields at a high level (11.0-14.0 t/ha) fairly independently of agroecological factors. When applying Biofert in autumn, NO3-N leaching was less in 100-200 cm chernozem soil-layers than for applications of traditional N-fertilizer. There were no differences between different maize genotypes concerning the agronomic efficiency of Biofert. In maize production 120-190 kg/ha N (chernozem soil) and 165 kg/ha N (meadow soil) doses of Biofert were the optimum doses in splitting applications (autumn + spring).

  • Site and hybrid-specific agrotechnical models in sweet corn production
    105-108
    Views:
    92

    The effect of three agrotechnical factors (sowing time, fertilization, plant density) and two genotypes on the crop yield of sweet corn was examined on chernozem soil in the Hajdúság region in two different crop years. Compared to the 30-year average, the climate was dry and warm in 2009 and humid in 2010. The experiments were conducted at the Látókép Research Site of the University of Debrecen. In the experiments we applied two sowing times (end of April, end of May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two crop density levels (45 thousand ha-1, 65 thousand ha-1). The hybrids we used were Jumbo and Enterprise. As regards the requirements of sweet corn production, the crop year of 2009 was dry and warm. The effect of moisture deficiency was more adverse on the crop yields with the second sowing time. On the contrary, the other examined year (2010) was significantly humid; the precipitation was 184 mm above the 30-year average and the temperature was average.
    In the dry and hot crop year, the best yields were obtained with the hybrid Jumbo (25677 kg-1) at 65 thousand ha-1 plant density level on the average of the fertilization levels. The crop yields of Enterprise were also the highest at high plant density level (24444 kg ha-1). With the second sowing time the highest yields were obtained at the higher plant density level (65 thousand ha-1) with both hybrids (Jumbo 18978 kg ha-1, Enterprise 18991 kg ha-1), which confirmed the good adaptation capability of these hybrids at high plant density level. In humid crop year with early sowing time the highest yielding hybrid was Enterprise (at 45 thousand ha-1 crop density level 20757 kg-1), at the same time, Jumbo was best yielding at the higher plant density level (18781 kg-1). With the second sowing time the highest crop yield was obtained with Enterprise again (20628 kg ha-1 at 65 thousand ha-1 plant density level). With this sowing time the average yields of Jumbo, was 18914 kg ha-1 respectively. We found that dry crop year and early sowing time provided the best conditions for sweet corn production; the highest yields were obtained under these circumstances, which might be the results of the outstanding water management of chernozem  soils.

  • The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids
    143-147
    Views:
    156

    In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.

    Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.

    The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.

    In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.

    The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.

    However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.

    As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.

  • The effect of sowing time on the yield and the variance of the seed moisture content a harvest of maize (Zea mays L.) hybrids
    39-49
    Views:
    90

    Sowing time is an important crop technology element of maize. We studied the effect of this factor on the growth and production of maize in an experiment carried out near Hajdúböszörmény, in 2003 and 2004, and near Debrecen, in 2005.
    The soils of the experiments were humic gley soil and chernozem. Weather in both years differed greatly. 2003 was drought. Neither the distribution, nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
    In 2004 and in 2005, there were favorable and rainy seasons. The distribution and quantity of precipitation were suitable between April and September. The average temperature was also suitable for maize.
    In 2003, we tested seven hybrids at four sowing times. Hybrids with a shorter vegetation period gave the highest yield at the later sowing time, while the hybrids with a longer vegetation period gave them at the earlier sowing time. The yield of PR34B97, PR36N70, PR36M53 hybrids were the best at every sowing times. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
    In 2004, we examined the yield and seed moisture contents of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing times. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year, due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time, than at the later.
    In 2005, we applied three sowing times. Unfortunately, the results of the third sowing time could not be analyzed, due to the low plant density. The yield of the six hybrids varied from 12 to 14 t/ha at the first sowing time. At the second sowing time, the yields fluctuated and each hybrid had the lowest yield, except the PR37D25 hybrid. At the latest sowing time, the yield of the PR34B97 hybrid was the lowest. However, this low yield was due to damage from the Western corn rootworm (Diabrotica virgifera) imago. The moisture content at harvest of the hybrids varied from 16 to 24% at the first sowing time. Yields at the second sowing time were higher. The low yield of the PR34B97 hybrid coupled with a higher seed moisture content. In addition, the maximum value of the LAI was more favourable at the first sowing time, and ranged between 5-5.5 m2/m2.
    The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.

  • Evaluating of soil sulphur forms changes in long-term field experiments of Látókép
    71-76
    Views:
    152

    The aim of this work was to evaluate the changes of different sulphur forms (soluble, adsorbed) in chernozem soil in a long-term field experiment supplied with increasing doses of NPK fertilizers for a long time. In addition, other objective of this study included the examination of the applicability of recommended extractants of the different sulphate fraction in Hungarian soils. A long-term field experiment was established at the Research Station of Látókép of the University of Debrecen in 1984. In addition to control, two levels of NPK fertilizer doses have been used with irrigated and non-irrigated variants. Winter wheat and corn were cropped in a crop rotation on plots. Soil samples were collected in three different development stages of winter wheat, at the stage of stem elongation (April), flowering (May) and ripening (June of 2018) from the topsoil (0–20 cm) of experiment plots. Water-soluble inorganic sulphate was extracted with 0.01M CaCl2 solutions. The soluble plus adsorbed sulphate was extracted with 0.016M KH2PO4 solution. Sulphate was measured by turbidimetric method. 0.01M CaCl2-SO42— ranged between 0.293–1.896 mg kg-1 and the 0.016 M KH2PO4-SO42- varied between 5.087–10.261 mg kg-1. The values of KH2PO4 SO42- was higher than that of CaCl2-SO42-, because KH2PO4 extracted the adsorbed and soluble fractions of sulphate, while CaCl2 extracted the soluble sulphate fraction. The amount of absorbed sulphate was calculated by the differences of KH2PO4- SO4 and CaCl2-SO4. The KH2PO4 characterizes mainly the adsorbed sulphate fraction much more than the water-soluble fraction. KCl is the most widely used extractant for the determination of plant available sulphate content of soil in Hungary; therefore, KCl-SO42- fraction also was determined. The KCl-SO42- ranged between 0.328–2.152 mg kg-1. The CaCl2-SO42- and KCl-SO42- fractions were compared and based on Pearson's linear correlation, moderate correlation was established (r=0.511) between them. In all three extractant (0.01M CaCl2, 1M KCl, 0.016 M KH2PO4) higher sulphate fractions were measured in the fertilized plots where superphosphate had been supplied for ages until 2010. The arylsulphatase activity of soil also was determined and ranged between 9.284 and 26.860 µg p-nitrophenol g-1 h-1. The lowest value was observed in the treatment with highest NPK2 dose, both in irrigated and non-irrigated areas.

  • Effect of cadmium and zinc contamination on the population dynamics of soil microorgani
    73-77
    Views:
    105

    Changes in the population dynamics of microorganisms in a soil artificially contaminated with various doses of cadmium and zinc was examined from a quantitative point of view, under laboratory circumstances. The research was based on a chernozem soil originating from the area of a long-term microelement contamination model experiment (Nagyhörcsökpuszta, Hungary), which was carried out during 1991 in the Experimental Site of the Institute of Soil Science and Agricultural Chemistry, Centre for Agricultural Researche Hungarian Academy of Sciences, Budapest, Hungary. According to the amount of bacteria, microscopic fungi and nitrifying bacteria, it can be stated that the effect of contamination can be observed even in the perspective of nearly two decades. In more cases significant changes in the number of soil bacteria and microscopic fungi could be observed, and the nitrification activity increased in case of both microelements. Therefore the further research of changes in microbial activity of these soils can provide novel scientific results.

  • Magnesium uptake dynamism of maize (Zea mays L.) on prairie soil
    83-89
    Views:
    70

    Different influence factors on the magnesium (Mg) uptake in case of three maize hybrids with different long vegetation period have been investigated at the Experimental Station of the University of Debrecen, Centre of Agricultural Sciences and Engineering, at Debrecen-Látókép. The soil of the experiment is a calcareous chernozem, based on loess, with high fertility, that is characteristic for soils of the region Hajdúság.
    Upon irrigation is the experiment divided to main plots, by different hybrids into sub-plots, while treatments of five nutrientsupply levels with fixed N:P2O5:K2O rate (beside control)mean sub-subplots. Soil samples were taken from the upper, cultivated soil layer 3 times during the year 2008. Their pH has been measures in a 0.01 M CaCl2-solution and their Mg-content from the same solution and from ammonium-lactate acetic acid (AL) extract. Plant samples were taken seven times in the vegetation period, of which we measured the Mg-content. Beside this, the during the
    vegetation period by maize biomass extracted Mg-amount has been calculated using fresh and dry matter weights. The effects of irrigation, hybrids and nutrient-supply levels on the soil pH and on the AL- and CaCl2-extractable Mg-amount have been studied, as well. After that I tried to find a correlation between soil pH and the Mg-content of soil determined in different extractants, beside this between the by the two solutions extracted Mg-amount. 

  • Changes of some soil chemical and microbiological characteristics in a long-term fertilization experiment in Hungary
    253-265
    Views:
    248

    Agricultural management practices – directly or indirectly – influence soil properties.

    Fertilization rates and crop rotation can strongly affect soil pH, soil nutrient supply and soil organic matter content due to the changes of microbial processes. The objective of this study was to compare the effects of different fertilization doses in monoculture and tri-culture of maize (monoculture: only maize grown since 1983, tri-culture: it is a three-year crop rotation system: pea – winter wheat – maize) on selected soil characteristics. The long-term fertilization experiments were set up in 1983 in Eastern Hungary. These experiments are situated west of Debrecen in Hajdúság loess region, on calcareous chernozem (according to WRB: Chernozems).

    The test plant was maize (Zea mays L.). One-one pilot blocks were selected from monoculture and tri-culture of the long-term experiments. The observed soil samples were taken in the 30th year of the experiment, in 2013. The doses of NPK fertilizers increased parallel together, so the effects of N-, P- and K-fertilizers cannot be separated.

    With the increasing fertilizer doses, the soil pH has decreased in both crop production systems and, in parallel, the hydrolytic acidity has significantly increased. A close negative correlation was proved between the pHH2O, pHKCl and hydrolytic acidity. An increased nutrient content in soil was recorded in every NPK treatment and the available phosphorus and nitrate content increased in higher proportion than that of potassium. Of the measured parameters of C-and N-cycles, fertilization has mostly had a positive effect on the microbial activity of soils. Besides the effects of fertilizer doses, correlation were looked for between soil microbiological properties. Evaluating the ratios among the measured parameters (organic carbon and microbial biomass carbon, OC/MBC ratio; carbon-dioxide and microbial biomass carbon; CO2/MBC proportion), the fertilization rate seems to be favoured by the increase of amounts of organic compounds

  • Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
    121-126
    Views:
    74

    Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop production for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
    The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
    In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
    On the basis of results the following can be stated: 
    1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
    inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
    2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
    3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
    4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.

  • Investigation of soils of stubbles of winter wheat and winter peas in conventional and reduced tillage systems
    95-99
    Views:
    187

    The effect of reduced and conventional tillage on soil compaction, soil moisture status and carbon-dioxide emission of the soil was studied on a meadow chernozem soil with high clay content in the soil cultivation experiment started in 1997 at Karcag Research Institute. Our investigations were done on stubbles after the harvest of winter wheat and winter peas after the very droughty vegetation period of 2014/2015.

    We established that the soil in both tillage systems was dry and compacted and the CO2-emission was very low. The positive effects of reduced tillage could be figured out only in the soil layer of 40–60 cm in the given weather conditions of that period.

  • Nitrogen Content of Hungarian Soils and Nitrogen Fertilization
    51-61
    Views:
    90

    For crop production and agricultural production, the most important natural resource is the soil that can optionally renew. Paralelly with this, soil plays a major role in the geological and biological cycle of elements. As a result of the big (geological) and small (biological) element cycles, the elements and combines neccessary for organisms can accumulate in the soil creating suitable living conditions for plants and other organisms. Soil is a heterogenous system both horizontally and vertically, and soil constituents show great variety in all the three dimensions, in addition, most of the parameters can also change between two examination dates. When talking about the factors influencing plant production, one should take into account this variation and heterogenity in time and space. When making fertilization recommendations, these factors should all be considered. In any consultation system, most of the mistakes and errors made are due to the unsatisfying soil testing and the negligence of soil heterogenity. In the practice of fertilization the biggest mistake is the improper soil sampling, then comes the methodical mistake of soil testing, which is followed by the inaccuracy of instrumental analysis and the subjectivity of result evaluation, but the latter two are negligible compared to the others. Under normal, i.e. production conditions, the quantity and distribution of nutrients in the soil are greatly dependent upon the applied technology, the amount and form of the applied natural and artificial fertilizers and the quality of fertilization.
    Fertilization recommendations are needed because in the layer which is accessible for plant roots only a part of the nutrient content is available for plants in a specific production cycle. An illustration of this is that though the upper 1 m layer of an average chernozem soil contains more than 5000 kg N, 12000 kg K2O and 1500 kg P2O5 (form of expression mostly used in Hungary), the application of fertilizer doses which are just fractions of these quantities is essential. This is due to the fact that the available amount of the total nutrient content depends from the quality of soil, the environmental factors (the physical and chemical qualities of the soil) and the specific nutrient’s qualities (solubility, adsorption). Knowledge of these processes and the examination of the factors influencing the actual nutrient content are vital for working out a fertilization practice, which does not put more strain on the environment than neccessary.

    All of the above mentioned should be considered when applying inputs in the fields. In a well-functioning practice that considers the economic and environmental conditions (unfortunately the present production and economic conditions do not enable an appropriate level and degree), three nutrients are supplemented generally (and were supplemented in the last decades): nitrogen, phosphorus, potassium.
    Studying the nutrient balance of the Hungarian field production’s last hundred years, we can draw some interesting conclusions.
    The nutrient balance became positive for nitrogen and potassium in the second half of the 1960’s, while for phosphorus it was positive from the first half of the 1960’s and this period lasted until the end of the 1980’s.
    Neither before the 1960’s, nor since the 1990’s has the amount of nutrients supplemented in a specific year reached the amount of the nutrient uptake of the same year.