Show Advanced search options Hide Advanced search options
Milestones in the development of agronomic management practices in crop production
Published September 5, 2018

From the dawn of the history of the human race, agriculture has always been a profound activity of mankind producing food and feed as well as various plant originated materials for further processing.

Agronomy, like any other human activity, depends on the perpetual development of knowledge and technical skills, - in a modern context ... science and innovation. This paper is intended to provide the reader with information regarding the main phases of the development of agricultural production from the Neolithic societies through the early Mesopotamian and Egyptian empires to the inventions of first organised learned society of Rome. The major research findings of the past two millennia including agro-chemistry, genetics and technical development are presented.

Such a review should not lead to any scientific conclusions, but rather a philosophical postulate similar to that of Jonathan Swift written some centuries ago: “And he gave it for his opinion, that whoever could make two ears of corn, or two blades of grass, to grow upon a spot of ground, where only one grew before, would deserve better of mankind, and do more essential service to his country, than the whole race of politicians put together”.

Show full abstract
Integration of Transformation Technology and Conventional Plant Breeding of Cereal Plants
Published December 10, 2002

The integration of plant breeding and plant transformation is needed because we have to create a homozygous genotype of great agronomic value by conventional breeding before the application of genetic technology with which we modify it by using a gene or genome sequence. The aim of integrated plant breeding is to trigger such advantegous change...s by genetic technology which can not be achieved via conventional breeding or just with considerably weaker efficacy. By transformation, the plant’s agronomic performance, the efficiency and security of its production will improve and it will enable more versatile uses of the plant. Genetic technology is one sequence of a new plant variety’ breeding. To create a transgenic variety, the isolation of a gene or a sequence of a gene from the donor genome for tranformation, a homozygous plant or target genome that is suitable for transformation and is created via conventional breeding methods, an effective transformation technique and the establishment of the new variety from the transformed, fertile plant are needed. The transgenic plant should be made suitable for establishing a variety by conventional breeding so that it could be produced securely, its growing could contribute to the development of modern, sustainable agriculture, its seed could be produced profitably, it could meet the reqiurements of DUS and that the changes indicated by the transgene could provide such economic advantages compared to the original variety, which have real commercial value.

Show full abstract
Challenges and limtations of site specific crop production applications of wheat and maize
Published November 13, 2012

The development and implementation of precision agriculture or site-specific farming has been made possible by combining the Global Positioning System (GPS) and the Geographic Information Systems (GIS). Site specific agronomic applications are of high importance concerning the efficiency of management in crop production as well as the protectio...n and maintenance of environment and nature. Precision crop production management techniques were applied at four locations to evaluate their impact on small plot units sown by wheat (Triticum aestivum L.) and maize (Zea mays L.) in a Hungarian national case study. The results obtained suggest the applicability of the site specific management techniques, however the crops studied responded in a different way concerning the impact of applications. Maize had a stronger response regarding grain yield and weed canopy. Wheat was responding better than maize concerning plant density and protein content performance.

Show full abstract
Development of a New Maize (Zea mays L.) Breeding Program
Published May 12, 2002

Genetic manipulation may not replace any conventional method in crop breeding programs, but it can be an important adjunct to them. Plant regeneration via tissue culture is becoming increasingly more common in monocots such as corn (Zea mays L.). In vitro culturability and regeneration ability of corn decreased as homozigosity increased, which ...suggested that these two attributes were controlled primarily by dominant gene action. Pollen (gametophytic) selection for resistance to aflatoxin in corn can greatly facilitate recurrent selection and screening of germplasm for resistance at a much less cost and shorter time than field testing. Integration of in vivo and in vitro techniques in maize breeding program has been developed to obtain desirable agronomic attributes, speed up the breeding process and enhance the genes responsible for them. The efficiency of anther and tissue cultures in most cereals such as maize and wheat have reached the stage where it can be used in breeding programs to some extent and many new cultivars produced by genetic manipulation have now reached the market.

Show full abstract
Effect of agrotechnical factors on the activity of urease enzyme in a long term fertlization experiment
Published February 18, 2016

The soil is a natural resource, the fertility preservation is an important part of the sustainable development. We have to monitor the transformation dinamics of the organic nitrogen-containing substances, to get accurate information about the changes of the nitrogen cycle in the soil.

Physical and chemical properties of the soil and th...e microorganism effect on the organic matter in the soil – in addition to the composition of organic matter. Wide variety of extracellular enzymes are present in this decomposition. These enzymes help in the transformation of the macromolecules to transforming low molecular weight compounds so they will be available during the assimilation.

The urease enzyme, catalyzes the hydrolysis of urea to CO2 and NH3. The urease is widely spread in the nature, it is present in the microorganisms, plants and animals.

We found that the soil moisture content, the rotation and the fertilization affect to the amount of urease in spring. Furthermore, we get significant difference between the irrigated and non irrigated samples in the second period of the year. Based on our results we can state that the activity of urease was higher in spring 2014.

The objective of our study was to present how the different agronomic factors affect on the activity of urease in a long term fertilizationexperiment.

Show full abstract
Effect of two different cropyear and the agrotechnological factors on the agronomic characteristic of the winter weat in a lon-term experiment
Published December 16, 2012

We studied the effects of crop rotation, fertilization and crop protection technologies on occurence of the major ear- and leaf-diseases (powdery mildew, helminthosporiosis, leaf rust, Fusarium wilt) and the degree of lodging in the winter wheat variety Mv Pálma in two very different years (2006/2007=dry; 2009/2010=rainy). The experiments were... carried out at the Látókép Experimental Farm of the University of Debrecen CAAES in triculture (pea-wheat-maize) and biculture (wheat-maize) at five fertilization levels by applying three different crop protection technologies (extensive, average, intensive).
In the cropyear of 2006/2007, the disease severity of leaf diseases was higher than the average in both crop rotations in spite of the fact that the weather during the whole vegetation period was dry. Infection by powdery mildew, helminthosporiosis and leaf rust increased with increasing fertilization, the highest infection was measured at the highest fertilization level (N200+PK) in the extensive crop protection technology. According to the results, no infection of ears by Fusarium and no lodging occurred in either bi- or triculture due to the dry year. The extremely rainy weather in 2009/2010 was favourable not only for the vegetative development of the stand, but also increased the occurance of leaf-, stalk- and ear-diseases and a high degree of lodging was observed. The highest infection by powdery mildew was observed in the plots with the highest fertilizer dosage under an extensive crop protection technology. A much higher helminthosporiosis infection was measured than in the cropyear of 2006/2007. The wet weather and higher than average temperature promoted the occurence and spreading of leaf rust. Under an extensive crop protection technology, a leaf rust infection of 24% and 31% was detected after maize and pea as a forecrop, respectively, in the N200+PK treatment. As opposed to 2006/2007, the disease severity of Fusarium was 3–8% and 2–7% in the control after maize and pea as a forecrop, respectively. This value, similarly to that of other pathogens, increased with increasing fertilization levels. Due to the large vegetative mass, a significant lodging was observed in the wheat stands in both bi- and triculture (17–100%, 12–100%). 

Show full abstract
Long-term experiments on chernozem soil in the University of Debrecen
Published September 5, 2018

The impact of agrotechnical management practices (nutrient and water supply, crop rotation, crop protection, genotype) on the yields of winter wheat and maize and on the soil water and nutrient cycles was studied in long-term experiments set up in 1983 in Eastern Hungary on chernozem soil. The long-term experiments have shown that nitrogen fert...ilizer rates exceeding the N-optimum of winter wheat resulted in the accumulation of NO3-N in the soil. Winter wheat varieties can be classified into four groups based on their natural nutrient utilization and their fertilizer response. The fertilizer responses of wheat varieties depended on crop year (6.5–8.9 t ha-1 maximum yields in 2011–2015 years) and the genotypes (in 2012 the difference was ~3 t ha-1 among varieties). The optimum N(+PK) doses varied between 30–150 kg ha-1 in different crop years. In maize production fertilization, irrigation and crop rotation have decision role on the yields. The efficiency of fertilization modified by cropyear (in dry 891–1315 kg ha-1, in average 1927–4042 kg ha-1, in rainy cropyear 2051–4473 kg ha-1 yield surpluses of maize, respectively) and crop rotation (in monoculture 1315–4473 kg ha-1, in biculture 924–2727 kg ha-1 and triculture 891–2291 kg ha-1 yield surpluses of maize, respectively). The optimum fertilization could improve the water use efficiency in maize production.

Our long-term experiments gave important ecological and agronomic information to guide regional development of sustainable cropping systems.

Show full abstract
The effect of drought and cropping system on the yield and yield components of maize (Zea mays L.)
Published December 28, 2018

Different Cropping Systems have many advantages and ensure better crop growth and yielding. Its combination with other agronomic measures can ensure optimal crop density for maximum crop growth and photosynthesis efficiency. The aim of this study was to investigate the influence of different cropping systems on monoculture and biculture rotatio...ns [maize- wheat]. The study found that crop rotation does not have a significant effect on the grain nutrition quality, Leaf Area Index (LAI) and Normalized Difference Vegetative Index (NDVI) but has a significant effect on the Soil-Plant Analysis Development (SPAD). Yield and yield components were significantly influenced by crop rotation in this study as yield, plant height, cob weight and number of grains per row all recorded lower mean at 5% probability levels.

Show full abstract
1 - 8 of 8 items