Search

Published After
Published Before

Search Results

  • Changes in the Macro-, Mezo-, and Microelement Contents of Maize Hybrids in Relation to the Level of Nutrient Supply
    126-130
    Views:
    63

    n my research, I measured the effect of NPK fertilisation on the macro- meso- and microelements content of maize hybrids in 2001. The experiment was set in the demonstration garden of the Department of Crop Production and Applied Ecology in the Agricultural Centre, at the University in Debrecen. The soil of the experiment is calcerous chernozem soil. Five fertilisation steps were applied. Besides the control the smallest rate was 40 kg N; 25 kg P2O5; 30 kg K2O of active ingredients. The largest rate was five times more than the smallest one: 200 kg N; 125 kg P2O5; 150 kg K2O, which is equal to 475 kg mixed active ingredients. The NPK treatment significantly influenced the macrolement content in several cases. The N content was the lowest in the control treatment. Compared to this the fertiliser treatments significantly increased the N content of hybrids. However the highest amounts of potassium and phosphorus could be measured in the control and the lowest amounts could be measured at the N 200+PK kg/ha treatment.
    The Ca content of hybrids was the highest in the N 120+PK kg/ha treatment, while their Mg and Zn content was the highest in the control treatment. The lowest amounts were weighed in the N 200+PK kg/ha treatments, that in several cases resulted in statistically proved decreasement compared to the control or the lower fertilizer doses. Considering the two mesoelements and Zn the most favourable results were obtained in the case of the Norma SC and DK 366 SC hybrids.
    Summing up what has been said moderate amounts of fertiliser doses (N 40-120+PK kg/ha) had a favourable influence on the micro- and macroelement content of hybrids.

  • The effect of season and fertilizer on the LAI, the photosynthesis and the yield of the maize hybrids with different genetic characteristics
    27-34
    Views:
    71

    The experiment was carried out in Debrecen, at the Experimental Station of the University of Debrecen Centre of Agricultural Sciences, Department of Crop Production and Applied Ecology. We tested 10 various hybrids with their own genetic characteristics for five different fertilizer doses, in addition to the parcels without fertilization. The three factors of production technology jointly determine the successfully of maize production, but in different measure. The yield and the stability of yield of maize can be increased with hybrid-specific technologies.
    In 2004-2005 experiment years the favorable results reached were due to the rainy season. There were significant difference between the productivity of maize hybrids. The N 40, P2O5 25, K2O 30 kg/ha treatment caused the highest increase of yield (3-5 t/ha) compared to the control (parcels without fertilization). The reaction of hybrids to the further fertilizer doses was different. The agro-ecological optimum of NPK fertilization was N 120, P 75, K 90 kg of the most hybrids.
    During the experiment, we tested the moisture loss of the five hybrids. The seed moisture content at harvest was higher than in previous years due to the rainy seasons. The seed moisture content of harvest of FAO 200-300 hybrids were about 20%. It changed between 21-24% in the case of hybrids with longer vegetation period (FAO 400), the seed moisture content of Mv Vilma (FAO 510) was 24.21-25.04% in the average of fertilizer treatments. There is an important difference between the moisture loss ability of hybrids which changed 0.2-0.6%/day. The moisture loss of hybrids changed depending on the fertilizer treatment; usually, it was more favorable in the optimal fertilizer dose (N120+PK).
    In the case of tested hybrids, we measured the highest LAI and photosynthetic activity at the optimal treatment, N 120, P2O5 75, K2O 90 kg/ha in the respect of efficiency and environmental protection, and the yield was high also for this treatment. There are significant difference between the LAI, the photosynthetic activity and the yield of hybrids, and these values could change depending on the treatment of fertilization.

  • Effect of NPK fertilization on the yield and yield stability of different maize genotypes
    101-104
    Views:
    117

    The yielding capacity and quality parameters of 11 maize hybrids were studied in 2011 on calcareous chernozem soil in a 25-year long-term fertilization experiment in the control (without fertilization), in the base treatment of N 40 kg ha-1, P2O5 25 kg ha-1, K2O 30 kg ha-1 and in five treatments which were the multiplied doses of the base treatment. The N fertilizer was applied in the autumn and in the spring, while P and K fertilizers were applied in the autumn.The sowing time was 17–18 April, the time of harvest was 8 October. The 30-year average of precipitation (April–Sept) was 345.1 mm, the amount of precipitation did not differ greatly from that, however, its distribution was very unfavourable.
    It was found that the largest yield increment (as compared to the control) was in the treatment N 40 kg ha-1, P2O5 25 kg ha-1, K2O 30 kg ha-1 in the long-term experiment. The largest yields were obtained for the hybrids P9494, PR37N01 and PR35F38 (13.64–13.71 t ha-1). Due to the dry period at the end of the summer – beginning of autumn, the grain moisture content at harvest was favourably low, 12–18% depending on the treatment and the growing season.

    The N fertilization significantly increased the protein content of the kernel, but the starch content of the kernel decreased (significantly in several cases) with increasing fertilizer doses and yields as compared with the control.
    The highest protein content was measured in hybrids GK Boglár and Szegedi 386. The oil content was above 4% for GK Boglár, but the two hybrids were not among the best yielding hybrids in spite of their good inner content. The starch content was around 75 % without fertilization, it decreased with fertilization.
    For the tested hybrids, the fertilizer dose N 120 kg ha-1, P2O5 75 kg ha-1, K2O 90 kg ha-1 can be recommended with respect to efficacy and environmental considerations.

  • The effect of biopreparations in pot experiment
    45-49
    Views:
    129

    In pot experiment the effect of Amykor and Organic Green Gold bioproducts and their combinations with NPK fertilizer on some soil properties (chemical parameters) and on the biomass of testplant were studied. The experiment was set up in 2012 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. The studied soil typein the pot experiment was humus sandy soil from Debrecen-Pallag with onion (Allium cepa) test plant. At the end of the experiment (after 4 week) in our laboratory the samples of soil and plant were determined. The nitrate-nitrogen, AL-soluble phosphorus and potassium content of soil, the weight of green onion leaves, the wet weight of bulb and root of onion and biomass of onion. The results of the study were the following: – The treatments influenced positively the nitrate-nitrogen, the AL-soluble phosphorus and potassium content of soil. – The most effective treatments were the artificial fertilization (NO3-N) and the NPK+ simple dose of Amykor (AL-P2O5 and Al-K2O). – The NPK fertilization and the NPK+OGG (sprinkle in every 10 days) combinations had significant positive effect on the weight of green onion leaves. – The biofertilization and the straw+biofertilizer combinations stimulated the AL-soluble potassium content of soil occasionally. – The OGG treatment (sprinkle in every 10 days) had significant effective impact on the wet weight of bulb and root of onion. – The biomass of onion was increased by the artificial fertilization and OGG (sprinkle in every 10 days) treatment.

  • Evaluating changes in nitrogen and sulphur content in a soil-plant system in a long-term fertilization experiment
    77-85
    Views:
    124

    The objective of this study was to evaluate the impact of long term NPK fertilization (considering that S containing superphosphate was supplied for 26 years of experiment, but since 9 years S has not used any longer) on sulphur- and nitrogen content and N/S ratio of winter wheat. The second objective of this work was to determine the changes of the amount of the different nitrogen and sulphur fraction in chernozem soil in a long term fertilization experiment. The third aim of the work was to determine if a relationship could be established between the studied parameters. Based on our results, it can be stated that the sulphur containing superphosphate supplied in the period of 1984-2010 has no longer significant effect on total sulphur content of plant in 2018. The NPK fertilization treatments had positive effect on total nitrogen content of winter wheat. In general, increasing NPK doses resulted in significantly higher nitrogen. The effect of irrigation applied in previous years has no statistically significant effect on the sulphur and nitrogen content of wheat. The wheat grain produced in our experiment, especially in fertilized treatments showed S deficiency. Analysing the changes of CaCl2 soluble nitrate-N and total N of the soil, it can be stated that the effect of increasing fertilizer doses clearly appears in these parameters, because the treatment with increasing fertilizer doses resulted higher CaCl2 soluble N forms compared to the control treatment in soil. These values increased until flowering stage of wheat and after that a slightly decrease was observed as a result of higher N uptake of plant. In overall, it can be stated, that the effect of superphosphate on measured sulphur fraction is prevailed. With increasing fertilizer doses higher sulphate content was detected in soil, but the sulphate content measured in different soil extractant is not enough for the wheat in this experiment area. Studying the correlation between the measured parameters of plant and soil, it can be concluded, that the relationships between nitrogen in the plant and in the soil is stable, and did not change during the growing season. The correlation between plant S and soil S varied in the measured periods and the r value was low in most cases. At the stage of flowering the highest r value was found between KCl-SO4 and plant S. In the stage of ripening the strongest correlation was detected between KH2PO4-SO4 and grain S content.

  • The effect of different microbial preparations on some soil characteristics
    83-86
    Views:
    97

    In pot experiment the effect of different microbial inoculants and their combinations with NPK fertilizer and wheat straw on some soil properties (physical, chemical, and microbiological parameters) were studied. The experiment was set up in 2011 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. The studied soil type was calcareous chernozem soil from Debrecen (Látókép) with ryegrass (Lolium perenne, L.) test plant.
    At the end of the experiment in our laboratory the nitrate-nitrogen content of soil, the AL-soluble phosphorus and potassium content of soil, the urease enzyme activity of soil, the total number of bacteria and the number of microscopical fungi were determined.
    The results of the study were the following:
    – The straw treatment and the straw + biofertilizer combinations influenced positively the nitrate content of soil.
    – The NPK fertilization and the straw+bacterial fertilizer combinations had significant positive effect on the AL-soluble phosphorus content of the soil.
    – The biofertilization and the straw+biofertilizer combinations stimulated the AL-soluble potassium content of soil occasionally.
    – The total number of bacteria was influenced by the NPK fertilization, the bacterial fertilization and the straw+bacterial fertilizer combinations significantly.
    – In case of the number of microscopic fungi caused in some cases significant changes the NPK+bacterial fertilizer and straw+bacterial fertilizer combinations.
    – The soil urease enzyme activity was increased in all cases strongly especially by the straw+bacterial preparation combinations.

  • Examination of the Nutrient and Water Utilization of Different Corn Genotypes in the Hajdúság
    55-59
    Views:
    143

    The research was set up on chernozem soil at the Látókép MÉK research area of the University of Debrecen in Hungary. We examined the following factors of the hybrid P9494, P9578, PR37N01 and PR37M81 in 2013.Yield, yield production per 1 kg fertilizer, water utilization and nutrient reaction. We found that the best yield results were achieved at level N120+PK in case of hybrid P9494 (17 132 kg ha-1) P9578 (16 838 kg ha-1) and PR37N01 (17 476 kg ha-1) and at level N150+PK for hybrid PR37M81 (16 754 kg ha-1). Results of yield per 1 kg NPK studies indicate that the most intense yield growth occurred at level N30+PK compared to the control treatment. This means that yield production per 1 kg NPK was 39.2 kg kg-1 in the case of hybrid P9494, 54.2 kg kg-1 in the case of P9578, 17.6 kg kg-1 for PR37N01 and 44.2 kg kg-1 in the case of PR37M81. After comparing corn hybrids’ water utilization, our conclusion was that the control treatment achieved the worst results in the case of each hybrid (P9494: 20.8 kg mm-1, P9578: 21.0 kg mm-1, PR37N01: 26.2 kg mm-1, PR37M81: 19.5 kg mm-1). For hybrid P9494, P9578 and P37N01, the best water utilization results were measured at level N120+PK (31.5 kg mm-1, 31,0 kg mm-1 and 32.1 kg mm-1), while PR37M81 reached the highest values at level N150+PK (30.8 kg mm-1). We determined the hybrids’ nutrient reaction and its optimum fertilizer values. The best nutrient reaction results were achieved by hybrid PR37N01, while that of hybrid PR37M81 proved to be the weakest.

  • The effect of NPK treatments on the Cu and Fe content of winter wheat (Triticum aestivum L.)
    31-34
    Views:
    174

    In this study the effect of N, P and K nutrients on the Cu and Fe content of winter wheat (Triticum aestivum L.) grains was investigated in a long-term fertilization experiment set up in Nagyhörcsök. Samples were also harvested from four experimental stations of the Hungarian national long-term fertilization trials. These are the following: Bicsérd, Iregszemcse, Karcag, and Putnok. Plant samples were collected in 2005 which was very wet. Our results from Nagyhörcsök were compared with the Cu and Fe content of samples which were harvested from control plots of other experimental stations. The Cu and Fe content of grain samples were measured using inductively coupled plasma mass spectrometer (ICP-MS) followed by digestion with HNO3-H2O2 solution. All data were subjected to ANOVA, and when significant differences (P<0.05) were detected, Duncan’s test was performed to allow separation of means.

    The main conclusions are as follows: Cu and Fe content of wheat grains was higher and higher in every NPK treatments. Samples were harvested from the control plots of Iregszemcse and Bicsérd have higher Cu content than the treated samples from Nagyhörcsök.

  • The effect of NPK fertilization and the number of plants on the yield of maize hybrids with different genetic base in half-industrial experiment
    103-108
    Views:
    178

    In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize.

    The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2, this it was a halfindustrial experiment. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. Yield increasing effect of the fertilizer also depended on the number of plants per hectare at a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants/ha.

    In Hajdúszoboszló, in 2015 the amount of rainfall from January to October was 340.3 mm, which was less than the average of 30 years by 105.5 mm. This year was not only draughty but it was also extremely hot, as the average temperature was higher by 1.7 °C than the average of 30 years. In the critical months of the growing season the distribution of precipitation was unfavourable for maize: in June the amount of rainfall was less by 31mm and in July by 42 mm than the average of many years.

    Unfavourable effects of the weather of year 2015 were reflected also by our experimental data. The yield of hybrids without fertilization changed between 5.28–7.13 t ha-1 depending on the number of plants.

    It can be associated also with the unfavourable crop year that the yield of the six tested hybrids is 6.33 t ha-1 in the average of the stand density of 60, 70 and 80 thousand plants per hectare without fertilization, while it is 7.14 t ha-1 with N80+PK fertilizer treatment. That increase in the yield is only 0.81 t ha-1, but it is significant. Due to the especially draughty weather the yield increasing effect of fertilizers was moderate. In the average of the hybrids and the number of plants, increasing the N80+PK treatment to N160+PK, the yield did not increase but decreased, which is explicable by the water scarcity in the period of flowering, fertilization and grain filling.

    The agroecological optimum of fertilization was N 80, P2O5 60 and K2O 70 kg ha-1. Due to the intense water scarcity, increased fertilization caused decrease in the yield. As for the number of plants, 70 000 plants ha-1 proved to be the optimum, and the further increase of the number of plants caused decrease in the yield.

  • Microbiological preparations affecting the soil nutrient availability and growth of ryegrass in a pot experiment
    49-53
    Views:
    136

    The effects of different bacterial fertilizers and their combinations with NPK fertilizer and wheat straw were investigated on some soil properties (chemical parameters) and on the biomass production of testplant. The applied quantities of the bacterial fertilizers were the double of the recommended dose. The experiment was set up in 2013 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. Calcareous chernozem soil; originating from Debrecen (Látókép) was used with ryegrass (Lolium perenne L.) test plant. At the end of the experiment (after 8 week) the samples of soil and plants were determined for nitrate-nitrogen, ALsoluble phosphorus and potassium content of soil, the weight of green biomass of ryegrass per pot, the dry matter and moisture content of ryegrass. Straw treatment resulted better water and available nutrient content of soil in general. Inoculation however was not improving the biomass production over the fertilizer treatment. Interrelation with the recommended dose could be further studied.

  • Evaluating of soil sulphur forms changes in long-term field experiments of Látókép
    71-76
    Views:
    151

    The aim of this work was to evaluate the changes of different sulphur forms (soluble, adsorbed) in chernozem soil in a long-term field experiment supplied with increasing doses of NPK fertilizers for a long time. In addition, other objective of this study included the examination of the applicability of recommended extractants of the different sulphate fraction in Hungarian soils. A long-term field experiment was established at the Research Station of Látókép of the University of Debrecen in 1984. In addition to control, two levels of NPK fertilizer doses have been used with irrigated and non-irrigated variants. Winter wheat and corn were cropped in a crop rotation on plots. Soil samples were collected in three different development stages of winter wheat, at the stage of stem elongation (April), flowering (May) and ripening (June of 2018) from the topsoil (0–20 cm) of experiment plots. Water-soluble inorganic sulphate was extracted with 0.01M CaCl2 solutions. The soluble plus adsorbed sulphate was extracted with 0.016M KH2PO4 solution. Sulphate was measured by turbidimetric method. 0.01M CaCl2-SO42— ranged between 0.293–1.896 mg kg-1 and the 0.016 M KH2PO4-SO42- varied between 5.087–10.261 mg kg-1. The values of KH2PO4 SO42- was higher than that of CaCl2-SO42-, because KH2PO4 extracted the adsorbed and soluble fractions of sulphate, while CaCl2 extracted the soluble sulphate fraction. The amount of absorbed sulphate was calculated by the differences of KH2PO4- SO4 and CaCl2-SO4. The KH2PO4 characterizes mainly the adsorbed sulphate fraction much more than the water-soluble fraction. KCl is the most widely used extractant for the determination of plant available sulphate content of soil in Hungary; therefore, KCl-SO42- fraction also was determined. The KCl-SO42- ranged between 0.328–2.152 mg kg-1. The CaCl2-SO42- and KCl-SO42- fractions were compared and based on Pearson's linear correlation, moderate correlation was established (r=0.511) between them. In all three extractant (0.01M CaCl2, 1M KCl, 0.016 M KH2PO4) higher sulphate fractions were measured in the fertilized plots where superphosphate had been supplied for ages until 2010. The arylsulphatase activity of soil also was determined and ranged between 9.284 and 26.860 µg p-nitrophenol g-1 h-1. The lowest value was observed in the treatment with highest NPK2 dose, both in irrigated and non-irrigated areas.

  • The effect of plant density on maize yield in average and extremely dry years
    7-16
    Views:
    85

    The yield safety of maize has not been satisfactory in Hungary for decades. Yield is influenced by the combination of several factors.
    In recent years, the frequency of dry years increased and fertilization decreased. These factors call for a rational determination of the plant density.
    I studied the relationship between plant density and yield in 2003-2004 and 2007 on meadow soil. 
    In 2003, the weather was dry. In the vegetation period, the amount of precipitation was 78.5 mm lower and the temperature was 0.97 °C higher than the average of 30 years, the number of hot days was 47-60 (days with a temperature higher than 30 °C). However, we obtained favourable results under experimental conditions in 2003 after wheat as a forecrop using the fertilizer Kemira Power. 
    The weather in 2004 was favourable. In the vegetation period, the amount of precipitation was 93.2 mm higher than the average of 30 years.  Although, the distribution of the precipitation could have been more favourable. The yield of the hybrids ranged between 8.87-10.42 t/ha. Among the studied seven hybrids, the early hybrids gave the highest yield at the highest plant density of 90 thousand plants/ha (PR38Y09, PR38A67, PR37D25, PR37M34). However, FAO 400-500 hybrids gave favourable results also at the low plant density of 45 thousand plants/ha (8-9 t/ha). At this plant density, the aeration of the plant stock was better and the hybrids were prone to bringing several cobs. Yield stagnated with increasing plant density (60 thousand plants/ha), then at 75-90 thousand plants per ha, the yield started to increase again.
    In 2004 the yield of hybrids was considerably higher than in the previous year. In contrast to yields of 8.87-10.42 t/ha in 2003, yields in 2004 were around 9-12 t/ha.
    The yield of the hybrid XO 902 P is above 12 t/ha already at a plant density of 45 thousand plants/ha. It gives maximum yield at the plant density of 90 thousand plants/ha.
    The hybrid PR38P92 showed a good response to changing plant density, but its yield was only 9 t/ha at the low plant density value.
    In a favourable year, the yield of the hybrids PR38B85, PR37W05, PR37D25, PR37K85 at a plant density of 45 thousand plants/ha 11 t/ha, while at the higher plant density of 90 thousand plants/ha, it ranges around 13-15 t/ha.

    Hybrids PR36K20, PR35Y54, PR34H31 have a good individual yield and they are prone to bringing several cobs in favourable years at a low plant density. Their maximum yield at the plant density of 90 thousand plants/ha is almost 16 t/ha.
    In 2007, the weather was similar to that of the extremely dry year of 2003. The amount of precipitation in the vegetation period was 41.9 mm lower than the average of 30 years and its distribution was not favourable either.
    In the optimum NPK fertilizer treatment at an optimum plant density, the yield of hybrids ranged between 9.32-10.73 t/ha. The highest yields of 10.22-10.73 t/ha were measured for hybrids PR38A79 (FAO 300) and PR35F73 at a relatively low plant density of 60 thousand plants/ha.
    In the average of the hybrids, the optimum NPK dosage was N 131, P2O5 82, K2O 93 kg/ha active ingredient.

  • Effect of Ferilizer on the Yield of Maize (Zea mays L.)
    40-46
    Views:
    114

    The effect of fertilization on the yield of maize was examined on chernoem soil with lime deposits at the experimental station at Látókép of the Center for Agricultural Sciences, University of Debrecen. The yields of maize were evaluated using quadratic regression function, in three years – between 2000 and 2002 – in non-irrigated and irrigated treatments. After calculating the regression equations, by derivation of the functions, we have determined the amount of fertilizers needed for maximum yield.
    In the non-irrigated treatments, maximum yield and the active substance amount of fertilizer was as it follows: in 2000, yield of 9,133 t/ha with the application of 384 kg/ha mixed active substance, while in 2002 a yield of 6,289 t/ha with the application 236 kg/ha NPK active substance was achieved. In 2001, due to the favourable precipitation, a yield of 9,864 t/ha was achieved with the application of 245 kg/ha fertilizer. In the case of maximum yield, compared to the unfertilized control, the yield increase was 2,5-5 t/ha. The average increase for 1 kg of NPK fertilizer was 13-19 kg.
    We also determined the necessary fertilizer dosage for maximum yield in irrigated treatments. In 2000, 10,003 t/ha with a dosage of 423 kg/ha, in 2001, 11,542 t/ha with a dosage of 277 kg/ha and in 2002, 8,596 t/ha of maximum yield could be achieved with a fertilizer treatment of 277 kg/ha in the examined three years. The yield increase, in irrigated treatments, varied between 3,9-5,9 t/ha so it was greater than in the case of non-irrigated experimetal plots. The yield increase for 1 kg fertilizer varied between 12-21 kg.

  • The effect of different fertilizer treatments on the sulphur and protein content of wheat
    73-76
    Views:
    111

    In this study the effect of N,P and K nutrients on the S and protein content of wheat grains was investigated in a long-term fertilization experiment set up in Nagyhörcsök. The calcareous chernozem soil having the following characteristics: pH (KCl): 7.3, CaCO3: 4.27%, humus: 3.45%, Al-soluble P2O5 and K2O: 60–80 and 180–200, KCl- Mg: 150–180, KCl+EDTA-soluble Mn-, Cu- and Zn-content: 80–150, 2–3 and 1–2 mg kg-1. The experiment had a split-split-plot design with 40 treatments in 4 replications. Plant samples were collected from 2002 and 2004. 2002 was a drought year while 2004 was very wet.
    The main conclusions are as follows:
    – The sulphur and protein content were than the control higher in every NPK treatments.
    – The sulphur and protein content of the wheat grains were higher in 2004 that had a lot of rain than in 2002 that had drouht.

  • Changes of some soil chemical and microbiological characteristics in a long-term fertilization experiment in Hungary
    253-265
    Views:
    247

    Agricultural management practices – directly or indirectly – influence soil properties.

    Fertilization rates and crop rotation can strongly affect soil pH, soil nutrient supply and soil organic matter content due to the changes of microbial processes. The objective of this study was to compare the effects of different fertilization doses in monoculture and tri-culture of maize (monoculture: only maize grown since 1983, tri-culture: it is a three-year crop rotation system: pea – winter wheat – maize) on selected soil characteristics. The long-term fertilization experiments were set up in 1983 in Eastern Hungary. These experiments are situated west of Debrecen in Hajdúság loess region, on calcareous chernozem (according to WRB: Chernozems).

    The test plant was maize (Zea mays L.). One-one pilot blocks were selected from monoculture and tri-culture of the long-term experiments. The observed soil samples were taken in the 30th year of the experiment, in 2013. The doses of NPK fertilizers increased parallel together, so the effects of N-, P- and K-fertilizers cannot be separated.

    With the increasing fertilizer doses, the soil pH has decreased in both crop production systems and, in parallel, the hydrolytic acidity has significantly increased. A close negative correlation was proved between the pHH2O, pHKCl and hydrolytic acidity. An increased nutrient content in soil was recorded in every NPK treatment and the available phosphorus and nitrate content increased in higher proportion than that of potassium. Of the measured parameters of C-and N-cycles, fertilization has mostly had a positive effect on the microbial activity of soils. Besides the effects of fertilizer doses, correlation were looked for between soil microbiological properties. Evaluating the ratios among the measured parameters (organic carbon and microbial biomass carbon, OC/MBC ratio; carbon-dioxide and microbial biomass carbon; CO2/MBC proportion), the fertilization rate seems to be favoured by the increase of amounts of organic compounds

  • The effect of different bacterial fertilizers on the AL-soluble P2O5 content of soil, and the biomass of the rye-grass (Lolium perenne, L)
    93-98
    Views:
    185

    In pot experiment the effect of different bacterial fertilizers on some soil properties, and the amount of plant biomass were studied. The
    experiment was set up in 2010 at the Department of Soil Science and Agricultural Chemistry, in a three replications in a random block design. The ryegrass (Lolium perenne, L.) was used as a test plant. The studied soil type was calcareous chernosem soil from Látókép. In our laboratory AL-soluble P2O5 content of soil, the phosphatase enzyme activityof soil, the dry weight of rye-grass, and the phosphorus content of rye-grass were determined.
    The results of the study were the following:
    – The bacterial fertilizers - by basic treatments NPK - had significant positive effect on the AL- soluble phosphorus content of the soil.
    – The soil phosphatase enzyme activity was increased in all cases strongly by the microbial preparations used, the greatest impact was the Bactofil A bacterial fertilizer.
    – The plant educed P values significantly increased by the effect of microbial products, in addition to the fund NPK. In this case, the EM-1 and Microbion UNC bacterial fertilizer were the effective.
    – In case of the rye-grass biomass none of the bacterial preparations used caused any significant changes, either alone or when used them with straw treatment.

  • The relationship between the nutrient supply and the yield of maize hybrids with different genetic traits on chernozem soil in variant years
    27-31
    Views:
    186

    The experiments were set on lime-coated chernozem soil in 2013 and in 2014, in our study four hybrids were included with different FAO number. We studied the effect of NPK fertilization and row spacing on the yield. The fertilizer doses were based on a 25-year longterm experiment. Compared to control, the N40 +PK treatment has also achieved a significant yield increase, although some hybrids responsed with yield loss to the increasing fertilizer doses; this effect was observed especially in 2014. The majority of hybrids reached higher yields in both years using the 50 cm row spacing. The water release of hybrids was measured weekly during the maturation, at the same time points. The rainy September slowed ripening and the water release of the hybrids in 2013, so the grain wet content at harvest showed higher values. The moisture contents were increased for some hybrids, in spite of the positive and favorable dynamic of water loss.

  • Nutrient and water utilisation analyses of maize on chernozem soil in a long-term field experiment
    77-82
    Views:
    167

    We have conducted our research at the Látókép Research Farm of the University of Debrecen RISF Centre for Agricultural and Applied Economic Sciences during the cropyears of 2007, 2008 and 2009, on chernozem soil. In the case of crop rotation three models were set (mono-,bi- [wheat, maize] and triculture [pea, wheat, maize]). The five nutrient levels applied during the treatments were as follows: control [untreated], N60P45K45, N120P90K90, N180P135K135, N240P180K180. The conclusion of our results was the following: the crop rotation, the nutrient supply and the amount of precipitation all influenced the quantity of maize yield. As an effect of the increasing nutrient doses yield increase was experienced compared with the control treatments. In the average of the years the highest increase in yield excess/1 kg of NPK fertilizer was measured in the case of the monoculture (13 kg ha-1). As a consequence of is soil extorting effect the monoculture responded more intensively to the nutrient supplementation than the biculture or the triculture in the studied cropyears. In addition, we have observed that the three-year average yield amount per 1 mm precipitation was significantly influenced by the nutrient reserve of the soil. In the monoculture during the control treatment this value was 25 kg mm-1, the value measured in the case of the biculture turned out to be more favourable (42 kg mm-1).

  • The effects of fertilization on the protein related properties of winter wheat
    67-69
    Views:
    128

    The yield and quality of wheat are mainly determined by the plant production system, thus we studied the effect of mineral fertilization.

    The field trials were set up in 1983 at the Látókép Research Institute of the University of Debrecen. We examined effect of different Nfertilizer doses (60 kg ha-1 N/P/K, 120 kg ha-1 N/P/K) on Lupus, Mv Toldi and GK Csillag's protein properties in 2012. During the tests, three quality parameters were determined: wet gluten content (%), wet gluten spread (mm/h) and gluten index (%). In the experiment the effect of different doses of N-fertilizers significantly influenced by the wet gluten content and gluten index of Lupus.