Search

Published After
Published Before

Search Results

  • The Effect of Smut Gall Tumour Infection on Iron and Zinc Uptake and Distribution in Maize Seedlings
    27-32
    Views:
    87

    The amounts of Fe, and Zn were measured in maize seedlings infected by smut gall tumour (Ustilago maydis Dc. Cda.) and in healthy seedlings five days after infection. The amount of elements was also measured under different stress intensities. Due to the infection, as a biotic stress, the amount and distribution of examined elements have been changed. On the bases of the differences in the Fe distribution between the symptoms less and tumorial leaf parts, we have come to the conclusion that the infection also effects the mobilisation of Fe and Zn inside the plants. The Fe uptake was much higher in the infected plants and the tumour development also had an effect on the uptake and distribution of the examined elements. The experiments of infecting maize seedlings by monosporidial strain of crown gall tumour showed no tumour development. We found that the monosporidial strain also acts as a biotic stress and has an effect of iron and zinc distribution. We observed a slight difference in the iron and zinc contents in the roots of corn seedlings infected by different monosporidial sporidium concentrations, while the iron and zinc contents in the shoots were increased by the intensity of the infection. The roots do not form tumours. There is no difference between the roots of the infected and healthy corn seedlings. Since the Fe and Zn contents of the shoots of infected plants depend on the intensity of the infection, we have come to the conclusion that there must exist a „special” communication system regulating the transportation of the examined elements.
    In the experiments with infected maize seedlings, it became necessary to get the iron chlorosis before the disease reaches the lethal phase. Although most of the iron reserves are located in the embryo, to accelerate the chlorosis, the endosperm was removed, and it was observed, that the iron chlorosis appears later in maize seedlings when the endosperm is removed. The relative chlorophyll content of the first and second leaves was measured in iron efficient and iron deficient maize seedlings at different times.
    The higher IAA content of tumorial plant tissues is already known. The treatment with IAA decreases the iron concentration in the shoots and in the roots of +Fe precultured plants and increases at -Fe precultured ones. The TIBA retards the shoot-to-root transport of IAA. When the seedlings were treated simultaneously with IAA and TIBA, higher iron concentrations were observed in the shoots and in the roots of corn seedlings.
    We found extremely high iron concentrations in the roots of infected seedlings and, in line with this, serious damage to the roots was observed that this can be caused by the high iron content generated free radicals. The results demonstrate that IAA has a role in the shoot to root communication.