Search

Published After
Published Before

Search Results

  • Anaerobe degradation of maize infected by Fusarium graminearum
    57-61
    Views:
    123

    Last year intense rainfalls and moisture conditions were beneficial for the Fusarium sp. in Hungary. Fusarium strains decrease cereal quality (for example maize), furthermore may cause yield loss. Due to the toxin production, the fungi have a dangerous animal and human pathogen effect (Placinta et al., 1999).The effects of the Fusarium infection and its mycotoxin production haven’t been perfectly eliminated. Fusariumgraminearum
    is the most common agricultural pathogen in Hungary. The utilization of infected maize as an alternative biogas raw material may be an efficient and environmentally friendly disposal method. In this case, Fusarium-, and mycotoxin-content of the maize have to be analyzed as well as the impact of these factors’ on the biogas production process. Our experience was based on the raw material basis of a biogas plant. Different amount of Fusarium free and infected maize grits have been added to the regular raw material mixture. The detection of Fusarium fungi has been analyzed
    in experimental digesters throughout the different stages of mesophilic digestion. In the biogas liquid end product the Fusarium was detected by breeding and by microscope. According to our results, the Fusarium sp. was not detectable in the liquid end product after 30 days.

  • Studies on the Fusarium stalk rot infection of the maize genotypes using the Findex percentage and a computerised image analysis program
    45-51
    Views:
    96

    In a continental climate, the pathogens causing the most serious problems are species belonging to the Fusarium genus. When the pathogen attacks the stalk, the plant dies earlier, reducing grain filling and resulting in small, light ears. In addition, the stalks break or lodge, resulting in further yield losses from ears that cannot be harvested. During the three years of the experiment, 14 inbred lines were examined. The genotypes were sown in a two-factor split-plot design with four replications, with the genotypes in the main plots and four treatments in the subplots: two Fusarium graminearum isolates (1. FG36, 2. FGH4), 3. sterile kernels, 4. untreated control. The results experiments showed significant differences between the genotypes for resistance to fusarium stalk rot. Among the inbred lines the best resistance to fusarium stalk rot was exhibited by P06 and P07, both of which were related to ISSS. The precision and sensitivity of disease evaluations carried out visually and using image analysis software were compared in the experiment, and with two exceptions the CV values were lower for the image analysis. As the CV for measurements can be considered as a relative error, it can be stated that image analysis is the more precise of the two methods, so this technique gives a more accurate picture of the extent of stalk rot. The extent of stalk rot developing in response to natural infection is extremely environment-dependent, so the use of artificial inoculation is recommended for selection trials. 

  • Ecotoxicological impact of DON toxin on maize (Zea mays L.) germination
    35-40
    Views:
    147

    Fusarium graminearum is one of the most significant arable pathogen in Hungary, and various types of trichothecene mycotoxins (mostly DON, deoxynivalenol) are detected most commonly in cereals (Biró et al., 2011). Fusarium infection and mycotoxin production could not be eliminated, and infected maize by Fusarium sp. cannot be exploited as food, seed, or animal feed. However it can be raw material of biogas production. In this research we would like to investigate the content and effect of the toxin in the end product of biogas production on plant germination. The Fusarium sp. can cause mildew and seedling mortality in seed of maize (Zea mays L.), so we examine the effect of this on germination. In preliminary examination Fusarium sp. was not detected in the bioreactor of the Institute after the retention time (30 day), however it can be assumed that during the hydrolysis of the fungus growth and mycotoxin production also increased exponentially. There were no appropriate tools to detect the toxin in the end product of biogas production so modelling of anaerobic hydrolysis was necessary. The effects of hydrolyzed product for germination were also detected.