Show Advanced search options Hide Advanced search options
Overview of the evolutionary history and the role in citric acid production of alternative oxidase
Published March 20, 2013

...5); font-variant-ligatures: normal; font-variant-caps: normal; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">All organisms are exposed to countless environmental effects, which influence in a disadvantageous way their life processes. They continuously adapt to the changing conditions and respond to the stress impacts by defence mechanisms. Through different signal transduction pathways they are able to increase or decrease the expression of their genes and consequently modify their metabolic processes. My interest focuses on alternative oxidase (AOX) enzyme whose expression is often increased under biotic and abiotic stress. The so far proven and putative functions of the AOX play a role in the ability of organisms to adapt to different conditions, such as heavy metals accumulation, pathogenic infection, oxidative stress and lack of oxygen or nutrients.

AOX is a member of the di-iron carboxylate protein family. Members of the di-iron carboxylate protein family are present in all kingdoms of life. They are considered to have ancient origin. It is believed that their sulfide-resistant and oxygen-reducing ability played a role in the survival of organisms during the transition between the anaerobic and the aerobic world. It is assumed that the AOX arose in eukaryotes through a primary endosymbiotic event, and this event made possible the development of mitochondria. Afterwords, vertical inheritance, and secondary and tertiary endosimbiotic events led to its spread among eukaryotes. It is assumed that bacteria obtained AOX by horizontal gene transfer from plants.

AOX-catalyzed alternative respiration plays an important role in the operation of energy-producing and biosynthesizing system of microorganisms. In these cases, the regeneration of reduced cofactors is an essential condition, and therefore may be rate-limiting for biotechnological processes, including the citric acid production.

Show full abstract
The effect of different herbicide on the number and activity of living microorganisms in soil
Published May 23, 2006

Sustainable plant growth, considering the difficulties of weed elimination, cannot be effective without the application of herbicides. However, these chemicals have enormous ecological implications, including effects on the microbiological communities of soils. It is advisable to use herbicides that have minimal secondary effects on the environ...ment and soil-living microorganisms. In contrast, herbicides with prolonged growth stimulating or inhibiting effects are not suitable, because both types have strong influences on the number and activity of bacteria, thus causing changes in the ecological equilibrium.
Preceding small plot experiments, laboratory tests were carried out to study the effect of herbicides used in maize cultures on the number of bacteria and growth of microscopic fungi.
Substances that were observed to have stronger influences were applied in small plot experiments set up in the experimental garden of the Department of Plant Protection of the University of Debrecen. We studied the effects of four herbicides (Acenit A88EC, Frontier 900 EC, Merlin SC and Wing EC) on the microbiological properties of the soil. These herbicides were used in different concentrations in maize culture, and we investigated the effects in different soil layers.
In the laboratory experiments, we determined the total number of bacteria and microscopic fungi and examined the growth of Aspergillus niger, Trichoderma sp. and Fusarium oxysporum on peptone-glucose agar containing herbicides.
During the small plot experiments, soil samples were collected 3 times a year from 2-20 cm depth. The total numbers of bacteria and microscopic fungi were determined by plate dilution method, while the method of most probable number (Pochon method) was used to determine the numbers of nitrifying bacteria and cellulose decomposing bacteria. To evaluate the microbiological activity of the soil samples we measured carbon-dioxide release (after 10 days incubation), nitrate production (after 14 days incubation) and the concentration of C and N in the biomass.
We can summarize our results as follows:
• In laboratory experiments, herbicides caused a decrease in the number of bacteria and inhibited the growth of microscopic fungi.
• Frontier 900 EC and Acenit A 880 EC had the strongest inhibiting effect on microorganisms.
• In small plot experiments, herbicide treatment decreased the total number of bacteria and microscopic fungi.
• Herbicides caused a significant increase in the number of nitrifying and cellulose decomposing bacteria.
• Different herbicides containing the same active compound had similar influences on soil microoorganisms.
• A significant increase was observed in the physiological processes of tolerant microorganisms surviving the effects of herbicides

Show full abstract
Studies of Expression of Peptaibol Synthetase of Trichoderma reesei
Published December 6, 2005

Because of the potential importance of peptaibols in the biological control of plant diseases, a transgenic, a T. reesei strain carrying a tex1-promoter: goxA fusion plasmid was constructed for furthur studies. The peptaibol synthetase gene (which is highly similar to T. virens tex1) was identified in the genome sequence of T. reesei. A 900 bp ...5’ upstream noncoding fragment, presumed to include the promoter region of tex1, was cloned into the pSJ3 plasmid (which contains the Aspergillus niger goxA gene encoding glucose oxidase). Finally, we transformed T. reesei with the tex1-promoter: goxA fusion containing pSJ3 plasmid.

Show full abstract
1 - 3 of 3 items