Search



Show Advanced search options Hide Advanced search options
Sporthorse performance testing in eventing by own and progeny performance
Published July 31, 2012
49-56

The aim of the study was to evaluate the Hungarian Sporthorse population based on eventing competition performance. The database contained the results of 792 horses and 449 riders between 2000 and 2006. The eventing results were gathered from Hungary and other European countries. Blom transformed ranks were used to evaluate the sport performanc...e.Three models were fitted to the Blom scores. Evaluating all the competition categories at the same time weighted Blom scores were used according to the difficulty of the category. The linear mixed model included fixed effects for age, sex, breeder, owner, location, year; and random effects for animal and rider. Horses from the database were judged by their own performance, and stallions were investigated by performance of their progenies on the basis of descriptive statistics of Blom scores and weighted Blom scores. Breeding values of eventing performance were predicted. To improve the reliability of breeding values, more progenies should be
used in eventing competitions. 

Show full abstract
46
53
Random regression models for genetic evaluation of performance of the Hungarian show-jumping horse population
Published April 23, 2014
87-91

The aim of the study was to estimate genetic parameters for show-jumping competition performance using random regression model. Show-jumping competition results collected between 1996 and 2009 were analyzed. The database contained 272 951 starts of 8020 horses. Identity number and gender of the horse, rider, competition date, the level of the c...ompetition and placing were recorded in the database. Competition levels were categorized into five groups. Weighted – competition level used – square root transformed placing was used to measure performance of horses. The random regression model included fixed effects for gender, year and place of competition, and random effects for rider, animal and permanent environment.

Later performance of show-jumping horses measured with weighted square root ranks is less influenced by rider and permanent environmental effects than performance at the beginning of a horse’s sporting career. Heritability increased continuously from 6.3 years of age (2296 age in days), values were in the range of 0.07 and 0.37. Higher heritability was found in later ages. Weak genetic and phenotypic correlation was found between the early 4–5–6 years of age and older (7, 8, 8+) age classes. From 8.5 years of age (3132 days old) there were strong genetic and phenotypic correlations between neighboring age groups. For the same age classes moderate and strong genetic and phenotypic correlation was found. Genetic correlation between 13.5 years of age and older horses was very strong.

Show full abstract
54
65
Evaluation of Hungarian show-jumping results using different measurement variables
Published May 6, 2013
81-85

...5); font-variant-ligatures: normal; font-variant-caps: normal; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">The aim of the study was to compare different fitted models for show-jumping results of sporthorses and to estimate heritability and repeatability value. Show-jumping competition results collected between 1996 and 2011 were analyzed. The database contained 358 342 starts of 10 199 horses. Identity number, name and gender of the horse, rider, competition year, the level and location of the competition and placing were recorded in the database. To measure performance of horses, placing, number of starters and competition level were used. Competitions were categorized into five groups based on their difficulty level. The used repeatability animal model included fixed effects for age, gender, competition place, year of competition (and competition level in case of non-weighted measurement variables), and random effects for rider, animal and permanent environment effect. Variance components were estimated with VCE-6 software package. The goodness-of-fit of the models was low and moderate. Heritability and repeatability values were low for each measurement variables. The best goodness-of-fit model the weighted square root of placing resulted the highest heritability and repeatability value h2=0.074 and R=0.296.

Show full abstract
53
54
1 - 3 of 3 items