Search



Show Advanced search options Hide Advanced search options
Changes in weed flora of basket willow (Salix viminalis L.) under different soil nutrient supply
Published November 10, 2010
116-120

The world is in a continuous progress, as a result of which energy consumption and with this the release of gases with adverse impact show rapid increase. As a result of the survey conducted by the International Energy Agency, if the major economic powers do not initiate a change in their energy policy, the increase of energy consumption may as... well reach 40 % by 2030. This increased energy demand is getting more and more difficult to fulfill with the fossil energy resources, which is to lead to an increasing significance of renewable energy resources. In Hungary, these energy resources are the best to provide with biomass growth. Biomass growth for energetic purpose can mostly be provided by energy plants, out of which “energy willow” (Salix viminalis L.) is outstanding with its high yield and with its excellent burning technology characteristics of its timber. The willow’s cropping technology is being established in our country. One of our tasks is to work out an adequate weed control plan. The professional and safe use of herbicides can increase the success of production. In our paper, we discuss the weed flora data collected on  treatments applied in the different fertilizer and compost. We started our survey in 2010. We examined twelve different fertilizer and compost treated areas. The dominant weeds were: Amaranthus retroflexus, Chenopodium album, Echinochloa crus-galli among annuals; Cirsium arvense and Agropyron repens among the perennials. 

Show full abstract
22
31
Microbiological preparations affecting the soil nutrient availability and growth of ryegrass in a pot experiment
Published March 11, 2014
49-53

The effects of different bacterial fertilizers and their combinations with NPK fertilizer and wheat straw were investigated on some soil properties (chemical parameters) and on the biomass production of testplant. The applied quantities of the bacterial fertilizers were the double of the recommended dose. The experiment was set up in 2013 at th...e Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. Calcareous chernozem soil; originating from Debrecen (Látókép) was used with ryegrass (Lolium perenne L.) test plant. At the end of the experiment (after 8 week) the samples of soil and plants were determined for nitrate-nitrogen, ALsoluble phosphorus and potassium content of soil, the weight of green biomass of ryegrass per pot, the dry matter and moisture content of ryegrass. Straw treatment resulted better water and available nutrient content of soil in general. Inoculation however was not improving the biomass production over the fertilizer treatment. Interrelation with the recommended dose could be further studied.

Show full abstract
65
61
Effect of sowing time and planting space on change of yield and protein content of white lupine (Lupinus albus L.)
Published February 3, 2016
85-89

The hinge of the lupine crop cultivation technology is the sowing time and the determination of the breeding area. According to the literature the early sowing (as soon as possible to go to the soil) and larger growing area is recommended for seed production. Based on the results of our 2 years experiment, the effect of sowing time and differen...t spacing is important on yield of white lupine, and the effect of the sowing time is more significant. A decrease in the yield was observed after later sowings. The yield and the rate of its decreasing was varied in one year and among different years depending on wheather condition and sowing time.

The role of sowing time is significant for protein content of seeds. The average protein content decreased due to the later sowings in 2014, while 2015 the protein content of seeds in early sowing time and of plants sowed 4 weeks later was similar. We measured less protein content in the 2. sowing time sowed 2 weeks later than the first one. In the studied years the average protein content of seeds from different row spaces were not different.

Show full abstract
81
80
Effect of Copper, Zinc and Lead and Their Combinations on the Germination Capacity of Two Cereals
Published December 14, 2004
39-42

The majority of researchers have studied the following group of microelements: B, Zn, Mn, Cu, Na, Co, Mo, I, Sn, Cl, Al, V, F, Cr, Hg, Cs, Li, Cd, As, Th, Rb, Cr, W, Ti, Sn, Se, Ba, Br. Sporadically, the following elements have been mentioned too: Au, Ra, Hg and Pb. In this study, the effects of copper treatments and their combination with zinc... and lead microelements on the germination of maize and barley were investigated using different concentrations of these microelements. Six treatments were used: 1. Copper-sulphate (CuSO4) applied alone, 2. Zinc-sulphate (ZnSO4) applied alone, 3. Copper applied with zinc, 4. Lead-nitrate (Pb(NO3)2) applied alone, 5. Copper applied with lead and 6. Untreated control. Maize (Kiskun SC 297) and barley caryopsis were treated with copper and zinc solutions in the following concentrations: 0.03%, 0.003% and 0.0003%. Maize and barley caryopsis were treated with these solutions for 12 and 24 hours. Maize and barley caryopsis were also treated with lead solutions Pb(NO3)2 with different concentrations: 0.0005%, 0.005% and 0.05%. Maize and barley were treated with these solutions for 12 and 24 hours. In the combined treatments (3 and 5), the same concentration was used for each microelement as in treatments 1, 2 and 4. Control treatments were treated with water for both plant species. Our results showed that copper microelements significantly inhibit germination compared to the untreated control. The toxicity of copper is higher if concentration increases. Zinc microelements also inhibit germination, however its effect highly depends on the microelement concentration. Treatments of copper + zinc also inhibit germination. The two microelements applied together cause more phytotoxicity than they do alone. Lead is highly toxic to plants even in low concentrations. The toxic effect on germination dramatically increased when lead was applied with copper.

Show full abstract
75
118
Phytoplasma diseases on fruits in Hungary
Published November 2, 2014
24-29

...5); font-variant-ligatures: normal; font-variant-caps: normal; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">In the last twenty years, three phytoplasma diseases were identified in Hungary, viz. European Stone Fruit Yellows (ESFY) (caused by Candidatus Phytoplasma prunorum), pear decline (caused by Candidatus Phytoplasma pyri), and apple proliferation (caused by Candidatus Phytoplasma mali). Candidatus Phytoplasma prunorum was isolated from apricot, peach, plum and japanese plum. Cacopsylla pruni the vector of ESFY was also isolated and identified. Infection of Candidatus Phytoplasma pyri was diagnosed from pear and Candidatus Phytoplasma mali was found on apple and pear. The three phytoplasmas cause different damages on their host plants. The most economically important phytoplasma disease is the ESFY. It seriously impairs apricot and japanase plum trees. After infection of apricots and japanese plums show yellowing and defoliation, and within a few years die in apoplexy-like symptoms. The disease on japanese plum is so severe that this fruit practically can not be cultivated in Hungary. Pear decline is the most serious problem especially in intensive pear plantations. The vector Cacopsylla pyri, C. pyrisuga and C. pyricola can be found in almost all pear orchards. Because of the regular presence of psyllids in intensive pear orchards the insecticide control is necessary. Apple proliferation is not an important disease in Hungary. All of our isolations of ’Candidatus Phytoplasma mali’ occured in organic orchards and record was not available in Hungary lately.

Show full abstract
71
84
226 - 230 of 230 items
<< < 5 6 7 8 9 10