Search

Published After
Published Before

Search Results

  • Antimicrobial effect of dried sage on the microbiological state of fresh Hungarian sausage
    189-192
    Views:
    109

    The purpose of this study was to evaluate the microbial effect of dried sage (Salvia officinalis L.) on the traditional Hungarian sausage. We added 0.5, 1, 1.5, and 2 w/w% of sage to the sausages and tested them on the 0th, 7th and 14th day. The added dried sage had no effect on the tested microorganisms, but the sage extract inhibited Salmonella, Enterococcus faecium and Staphylococcus aureus.

  • Overview of the evolutionary history and the role in citric acid production of alternative oxidase
    83-88
    Views:
    125

    All organisms are exposed to countless environmental effects, which influence in a disadvantageous way their life processes. They continuously adapt to the changing conditions and respond to the stress impacts by defence mechanisms. Through different signal transduction pathways they are able to increase or decrease the expression of their genes and consequently modify their metabolic processes. My interest focuses on alternative oxidase (AOX) enzyme whose expression is often increased under biotic and abiotic stress. The so far proven and putative functions of the AOX play a role in the ability of organisms to adapt to different conditions, such as heavy metals accumulation, pathogenic infection, oxidative stress and lack of oxygen or nutrients.

    AOX is a member of the di-iron carboxylate protein family. Members of the di-iron carboxylate protein family are present in all kingdoms of life. They are considered to have ancient origin. It is believed that their sulfide-resistant and oxygen-reducing ability played a role in the survival of organisms during the transition between the anaerobic and the aerobic world. It is assumed that the AOX arose in eukaryotes through a primary endosymbiotic event, and this event made possible the development of mitochondria. Afterwords, vertical inheritance, and secondary and tertiary endosimbiotic events led to its spread among eukaryotes. It is assumed that bacteria obtained AOX by horizontal gene transfer from plants.

    AOX-catalyzed alternative respiration plays an important role in the operation of energy-producing and biosynthesizing system of microorganisms. In these cases, the regeneration of reduced cofactors is an essential condition, and therefore may be rate-limiting for biotechnological processes, including the citric acid production.

  • Identification and specific variety of actinomyces of streptomycetes genus in some chernozems of Ukraine
    67-74
    Views:
    61

    Is definite the quantitative and quality composition of chernozem usual and southern streptomycetes cenosis. It is rotined that humus horizons of chernozem usual more biogenic, than chernozem southern. Analysis of specific structure of streptomycetes association and calculation of some biodiversity indexes by Margalef, Berger-Parker and Serensen it was allowed to set the specific features of forming of these microorganisms cenosis in investigated soils.

  • The dynamics of biodiversity structure of soil microorganisms under the impact of biopreparations during potato growing season
    67-74
    Views:
    141

    The use of biological preparations such as Phytotsid and Planryz contributes the increase of the general number of soil bacteria population by 13.0–36.1% in the case of potato variety Scarbnytsya and by 4.5–24.6% for potato variety Oberig compared with control. It also increases the number of saprophyte microflora, which compete with plant pathogens, micromycetes, and causes 1.2–1.8 times reduction in the number of soil fungi – Fusarium and Alternaria. During the application of Rovral Akvaflo the Shannon ecological index of species biodiversity is lower than during the biopreparation use. The decrease of species biodiversity was observed as well as strengthening the dominance of some species (dark pigmentation in fungi).

  • The effect of season on the microbiological status of raw milk
    95-99
    Views:
    117

    Many factors can influence the microbiological quality of raw cow’s milk. In this study, our aim was to determine whether there was any difference between the microbiological statuses of milk produced in different seasons. Samples were collected and analysed from five dairy farms in Hajdú-Bihar County, from February to November in 2019. During our studies, total plate count (TPC), coliform count and Staphylococcus aureus count of raw cow’s milk samples were determined.

    There was no significant difference (P>0.05) between the mean TPC values detected in the milk collected in winter and autumn, but that values were significantly (P<0.05) lower than in the milk samples collected in spring and summer. Similarly to the TPC, in the case of coliform bacteria the lowest mean colony count was detected in the samples collected in winter. The difference was significant (P<0.05), compared to the values observed in the samples collected in summer. S. aureus was detected in bulk milk of only two farms in excess of 1.0 log10 cfu/ml. Also in case of S. aureus, there was a significant difference (P<0.05) between the values observed in the samples collected in winter and in summer. Samples from spring and summer contained the highest amount of S. aureus.

    Based on the results of our studies, in the case of almost all farms the mean TPC, coliform and S. aureus counts were lower in the samples collected in winter, than in the samples collected in summer. The fact that the samples collected in winter contained the lowest amount of colonies could be attributed to the inhibition of growth of mesophilic microorganisms below 8 °C. Furthermore, the fact that we observed the highest colony counts in samples collected in summer, can be related to the heat stress of cows during the summer due to unfavorable weather conditions (high temperature and humidity).

  • Production of novel fermented milks
    303-305
    Views:
    170

    The objective of this research was to test the influence of various natural substances on acid production, growth, and viability of characteristic microorganisms in yogurt and probiotic fermented dairy foods. Oligofructose, inulin, honey, and the dried biomass of Spirulina (Arthrospira) platensis were found to stimulate the growth rate and acid production activity of the major thermophilic diary cultures tested and, in addition to this, the presence of the aforementioned substrates also improved the survival of starter bacteria in fermented milk products during storage. The reduced production time of cultured milks resulted in increased production efficiency. The stimulatory and/or protective effect of oligofructose,
    inulin, honey, and Spirulina on Bifidobacterium spp. is probably the most important finding of this study because bifidobacteria do not grow well in milk and they have low survival rates in conventional fermented milks. Some of the bioactive substances tested were also capable of exerting an antifungal effect on spoilage yeasts and molds, and improving the nutritional and sensory properties of the final product, thus providing a new opportunity for manufacture of functional fermented dairy foods.

  • The role of cultivar susceptibility and vineyard age in GTD: examples from the Carpathian Basin
    57-63
    Views:
    172

    Grapevine trunk diseases (GTDs) are among the most severe problems in viticulture worldwide. The exact etiology and the role of endophytic microorganisms is not known yet and there is no adequate protection or curative treatment against the disease. Hungarian wine regions are also affected by the disease, and there is restricted information about the rate of infection nation-wide and about the susceptibility of the Hungarian cultivars.

    The main objectives of our research are to measure the symptom expression and the damage caused by GTDs, to understand the epidemiology and etiology of the disease to establish a foundation of a proper disease management.

    Cultivar susceptibility groups were created with the aim to allocate some Hungarian cultivars and the role of vineyard age was also examined in symptom expression.

  • Effect of Selenium Supplementation on in vitro Radish and Green Pepper Seedlings Germination
    149-155
    Views:
    132

    Selenium (Se) is an essential trace element for animals, microorganisms and some other eukaryotes. It has become increasingly evident that Se plays a significant role in reducing the incidence of lung, colorectal and prostate cancer in humans. Although there is evidence that selenium is needed for the growth of algae, the question of essentiality of Se in vascular plants is unresolved. Therefore Raphanus sativus (Se accumulator) and Capsicum annuum (non Se accumulator) were treated with 0-200 mg/l natrium-selenate. The results showed that lower (2 mg/l) concentration natrium-selenate increased the fitomass and total antioxodant capacity in seedlings.

  • Management of phytopathogens by application of green nanobiotechnology: Emerging trends and challenges
    15-22
    Views:
    250

    Nanotechnology is highly interdisciplinary and important research area in modern science. The use of nanomaterials offer major advantages due to their unique size, shape and significantly improved physical, chemical, biological and antimicrobial properties. Physicochemical and antimicrobial properties of metal nanoparticles have received much attention of researchers. There are different methods i.e. chemical, physical and biological for synthesis of nanoparticles. Chemical and physical methods have some limitations, and therefore, biological methods are needed to develop environment-friendly synthesis of nanoparticles. Moreover, biological method for the production of nanoparticles is simpler than chemical method as biological agents secrete large amount of enzymes, which reduce metals and can be responsible for the synthesis and capping on nanoparticles.

    Biological systems for nanoparticle synthesis include plants, fungi, bacteria, yeasts, and actinomycetes. Many plant species including Opuntia ficus-indica, Azardirachta indica, Lawsonia inermis, Triticum aestivum, Hydrilla verticillata, Citrus medica, Catharanthus roseus, Avena sativa, etc., bacteria, such as Bacillus subtilis, Sulfate-Reducing Bacteria, Pseudomonas stutzeri, Lactobacillus sp., Klebsiella aerogenes, Torulopsis sp., and fungi, like Fusarium spp. Aspergillus spp., Verticillium spp., Saccharomyces cerevisae MKY3, Phoma spp. etc. have been exploited for the synthesis of different nanoparticles. Among all biological systems, fungi have been found to be more efficient system for synthesis of metal nanoparticles as they are easy to grow, produce more biomass and secret many enzymes. We proposed the term myconanotechnology (myco = fungi, nanotechnology = the creation and exploitation of materials in the size range of 1–100 nm). Myconanotechnology is the interface between mycology and nanotechnology, and is an exciting new applied interdisciplinary science that may have considerable potential, partly due to the wide range and diversity of fungi.

    Nanotechnology is the promising tool to improve agricultural productivity though delivery of genes and drug molecules to target sites at cellular levels, genetic improvement, and nano-array based gene-technologies for gene expressions in plants and also use of nanoparticles-based gene transfer for breeding of varieties resistant to different pathogens and pests. The nanoparticles like copper (Cu), silver (Ag), titanium (Ti) and chitosan have shown their potential as novel antimicrobials for the management of pathogenic microorganisms affecting agricultural crops. Different experiments confirmed that fungal hyphae and conidial germination of pathogenic fungi are significantly inhibited by copper nanoparticles. The nanotechnologies can be used for the disease detection and also for its management. The progress in development of nano-herbicides, nano-fungicides and nano-pesticides will open up new avenues in the field of management of plant pathogens. The use of different nanoparticles in agriculture will increase productivity of crop. It is the necessity of time to use nanotechnology in agriculture with extensive experimental trials. However, there are challenges particularly the toxicity, which is not a big issue as compared to fungicides and pesticides.

  • The toxic effects of aflatoxin microorganisms in plants used as spices
    59-62
    Views:
    65

    As an extension of the analysis of black, white and capsicum peppers for aflatoxins , we have examined an additional 11 types of spices and
    4 herbs for these mycotoxins. The investigations consisted of assessment of the applicability of available methods of analysis and modifications of
    these, where necessary together, with a limited survey of each spice and herb for aflatoxins. The analysis of 13 types of ground spices reported
    the presence of low concentrations of aflatoxins in some samples of black pepper, celery seed, and nutmeg. We decided to include in our study 5
    of the spices examined by these workers (cinnamon, celery seed, coriander, nutmeg, and turmeric) for a comparison purpose. In addition we
    examined ginger, mace, cumin seed, dill seed, garlic powder, onion powder, and the herbs marjoram, rosemary, thyme, and sage.

  • The effect of apoplastic pH on the nutrient uptake
    65-71
    Views:
    94

    The pH of soil and rhizosphare –around the roots- determine the mobility and solubility of nutrients. The exudates organic acids of plant able to modify the pH, as well as the microorganisms also take part in mobilization of nutrients. The nutrient solve mostly in mildly acidic and neutral pH. The either assumption of utilization of nutrients is the uptake by roots and of course uptake to the cells to take part in metabolism. The pH of apoplast fluid determines the solubility and uptake of nutrients to the cells.
    The aim of this study was to examine the effect of nutrient solution and apoplastic pH together with a bacteria based biofertiliser (Phylazonit MC®) on nutrient uptake and pH of apoplast fluid in case of nutrient solution grown plants in laboratory experiment. According to my results, the bicarbonate increased the pH of nutrient solution in due to influence the solubility and uptake of nutrients. The given bicarbonate to the nutrient solution and infiltrated into the apoplazma also modified the pH of the apoplast fluid of the test plants. The effect of bicarbonate and biofertilizer were different on the pH of the apoplast fluid and nutrient solution in nutrient solution experiment. 

  • Inhibition of the spread of Sclerotinia sclerotiorum in aquaponics
    5-8
    Views:
    200

    Sclerotinia sclerotiorum, which causes white mold, is a widespread pathogen. In 2020, a new host plant of this fungus, the watercress (Nasturtium officinale) was identified in Hungary in an aquaponic system. During the cultivation of watercress S. sclerotiorum was detected on the plant, the fungus caused a 30% yield loss. Fungicides should not be used against fungi in aquaponic systems. Non-chemical methods of integrated pest management should be used. These include biological control (resistant species, predators, pathogens, antagonist microorganisms), manipulation of physical barriers, traps, and the physical environment. In the aquaponic system, the removal of the growing medium (expanded clay aggregate pellets) solved the damage of Sclerotinia sclerotiorum 100%. By removing the expanded clay aggregate pellets, the environmental conditions became unfavorable for the development and further spread of the S. sclerotium fungus.

  • Effect of Ozone Exposure on Phytopathogenic Microorganisms on Stored Apples
    9-13
    Views:
    93

    The aim of our study was to clarify the effect of ozone exposure on several phytopathogenic fungi on stored apple fruits under different storage conditions. The study was conducted at Bistrita, Romania, in the storehouse of an experimental apple orchard in 2002 and 2003. Two widely grown apple cultivars (‘Jonathan’ and ‘Golden Delicious’) were used. General microbial examination of the fruits was made during storage in order to identify the most important storage pathogens. Efficacy of six ozone treatments was evaluted on fruit decay caused by phytopathogenic fungi. Monthly observations (January, February, March and April) were made of the degree of decay and three measurements were assessed (disease frequency, disease intensity and degree of attack). Our results showed that the most important phytopathogenic fungi during storage was blue mold, caused by species of Penicillium. Disease frequency of apple fruits was very high on cv. ‘Jonathan’, much higher than on cv. ‘Golden delicious’. Ozone treatments (25 ppm ozone for 0.5 and 1.5 hours in November) caused significantly lower disease incidence on stored apple than all other ozone treatments. For longer storage, it seems that additional ozone treatments in February increased treatment efficacy. Cv. ‘Golden delicious’ seemed to be more resistant to storage diseases than cv. ‘Jonathan’ both on the untreated and treated fruits. The effect of the ozone treatments was also the most effective when 25 ppm ozone was applied for 0.5 and 1.5 hours in November.

  • Evaluation of the microbial soil quality indicators in agricultural soils from Crisurilor Plain
    79-80
    Views:
    98

    The researches were carried out in 2010 and 2011 on the haplic luvisol cultivated in three variant such as: pasture, cropland, and orchards. Based on the total number of microorganisms monitored in the haplic luvisol (aerobic mesophilic heterotrophs, yeast and mould, Actinomycetes, nitrogen fixing bacteria and nitrifying bacteria) was calculated the bacterial indicators of soil quality (BISQ) and was appreciate the bacterial potential of the haplic luvisol. Seasonal analyses were carried out, and annual BISQs have been calculated too. The values of the bacterial indicators of the haplic luvisol in different cultivation conditions (pasture, cropland and orchards) indicate a high density of the bacterial groups in 2010 and 2011. In 2010 the values of the BISQs are included between 3.617 (minimum in autumn, in pasture) and 5.458 (maximum, in spring, in pasture). In 2011, the minimum value (3.622) was registered in pasture, in autumn, and the maximum value (4.851) in the haplic luvisol cultivated with maize, in spring. In 2010 and 2011, based on the bacterial indicators of the soil quality values, on the first position is the cropland (4.750, 4.721) followed by orchards (4.615, 3.985) and pasture (4.537, 3.758).

  • Characterisation of a thermotolerant yeast, Kluyveromyces marxianus CBS712
    7-13
    Views:
    97

    Fermentation at high temperature with application of thermotolerant microorganisms is a technological advantage in bioethanol production. Among the yeasts, K. marxianus has outstanding thermotolarance. The industrial application of the IMB3 strain occurs usually at 45C. The final aim of our project is the genetic modification of the K. marxianus CBS712 strain in order to achieve ethanol production at higher temperature than the currently applied. This requires the characterization of the CBS712 strain, with special attention to the determination of the temperature limit of its growth and the amount of the ethanol produced. The temperature limit of growth was 48C in YPD medium. Elevation of the temperature above 45C led to an exponential drop of the cell viability. Ethanol production was tested in shaking flasks, in MYFM medium, under oxigene limited conditions, applying variable concentrations of glucose (12–20%) and different temperatures (45–47 ºC). Preliminary results have revealed that the elevation of glucose concentration increased the amount of ethanol produced. The amount of ethanol (appr. 5%)+ produced at the highest glucose concentration was not different at the tested temperatures (45, 46 and 47 ºC). The observation indicates the potential in raising the thermotolerance of the strain. 

  • Effect of cadmium and zinc contamination on the population dynamics of soil microorgani
    73-77
    Views:
    105

    Changes in the population dynamics of microorganisms in a soil artificially contaminated with various doses of cadmium and zinc was examined from a quantitative point of view, under laboratory circumstances. The research was based on a chernozem soil originating from the area of a long-term microelement contamination model experiment (Nagyhörcsökpuszta, Hungary), which was carried out during 1991 in the Experimental Site of the Institute of Soil Science and Agricultural Chemistry, Centre for Agricultural Researche Hungarian Academy of Sciences, Budapest, Hungary. According to the amount of bacteria, microscopic fungi and nitrifying bacteria, it can be stated that the effect of contamination can be observed even in the perspective of nearly two decades. In more cases significant changes in the number of soil bacteria and microscopic fungi could be observed, and the nitrification activity increased in case of both microelements. Therefore the further research of changes in microbial activity of these soils can provide novel scientific results.