Search

Magnesium uptake dynamism of maize (Zea mays L.) on prairie soil
83-89

Different influence factors on the magnesium (Mg) uptake in case of three maize hybrids with different long vegetation period have been investigated at the Experimental Station of the University of Debrecen, Centre of Agricultural Sciences and Engineering, at Debrecen-Látókép. The soil of the experiment is a calcareous chernozem, based on loess, with high fertility, that is characteristic for soils of the region Hajdúság.
Upon irrigation is the experiment divided to main plots, by different hybrids into sub-plots, while treatments of five nutrientsupply levels with fixed N:P2O5:K2O rate (beside control)mean sub-subplots. Soil samples were taken from the upper, cultivated soil layer 3 times during the year 2008. Their pH has been measures in a 0.01 M CaCl2-solution and their Mg-content from the same solution and from ammonium-lactate acetic acid (AL) extract. Plant samples were taken seven times in the vegetation period, of which we measured the Mg-content. Beside this, the during the
vegetation period by maize biomass extracted Mg-amount has been calculated using fresh and dry matter weights. The effects of irrigation, hybrids and nutrient-supply levels on the soil pH and on the AL- and CaCl2-extractable Mg-amount have been studied, as well. After that I tried to find a correlation between soil pH and the Mg-content of soil determined in different extractants, beside this between the by the two solutions extracted Mg-amount. 

58
105
Conceptional Model of Regional Agricultural Water Management System
199-209

Our study focuses on the water management improvement of the Hajdúsági-löszhát (loess ridge). The Hajdúsági-löszhát (loess ridge) is an intensive agricultural area. At the same time, the problem of increasing water demand is still not solved, so towards of safety production irrigation should be improved. To realise this should be known not even agricultural water demands but industrial and urban ones as well, thus a complex water management system is required to be worked out.
In the first part of the research, the water demand in the area is mapped, then a conceptional model of the Hajdúsági-löszhát’s (loess ridge’s) water management system is created. After collecting data the water management scenario is summarized in a real time model splitted into five periods.
During the research, the instruments of spatial informatics (GIS) are used to get acquainted with the variation of the hydrological parameters in space and time. To understand and simulate the different decision making processes and to choose the right decision alternative, a decision support system is created with the use of spatial informatics data.
In addition, considering the potentially right decision alternative, irrigation will be started in practice, an effect and after-effect inquiry will be made, and the results will be analysed, evaluated and summarized. Finally, a suggestion to the most adequate irrigation technology will be made.

70
123
Comparative study of different soybean genotypes in irrigation technology
91-95

In many places in Hungary, early maturity soybean can be successfully grown. The earlier maturity group of soy which ripened in 110–125 days in most crop areas in Hungary. However, to achieve excellent results, the selection of proper varieties is important too. Successful cultivation is largely dependent on the macro and microclimate of the production area, the nutrient supply of the soil and the cultivation technology. Soybean can be produced in places where the amount of precipitation is right, as the lack of water results in lower yields and deteriorated oil and protein concentrations. In the following study, 2 years (2016 and 2017) are compared to the yield, protein and oil content of the soybeans of the early maturation group in irrigated and non-irrigated treatments. Based on our experiment, it can be stated that, during the irrigation of soybean, oil and protein content and yields did not always change.

214
174
Correlations of the growth indexes and yield of winter wheat in a long-term experiment
139-144

The experiments were carried out at the Látókép experimental station of the Centre for Agricultural Sciences of University of Debrecen on chernozem soil in a long term winter wheat experiment. As forecrop rotation, we set up two models: a biculture (wheat and corn) and a triculture (pea, wheat and corn). We applied three levels of nutrients during the fertilization process (control, N50P35K40 and N150P105K120). The third variable studied was irrigation in case of which we tested non-irrigated variables (Ö1) and irrigation variables complemented up to the optimum (Ö3).

The effect of pre-crops, irrigation and nutrient-supply levels on some growth-parameters (LAI, LAD), weight of dry matter, just as SPADvalues and yield amounts of winter wheat has been investigated in this experiment. We tried to find out the extent of relationship between the different parameters, and we used the correlation analysis. The correlation analyses have confirmed that all of the investigated parameters had almost in all cases close positive correlation to the yield amount. These results have confirmed that the leaf area, the leaf duration, the SPADvalues, the fertilization and the forecrop have altogether resulted in the production of maximum grain yields.

115
141
Using research findings in precision maize production
227-231

The effect of crop production factors on maize yield are examined on chernozem soil in a more than 30 year old long-term experiment on the Látókép Experiment Site of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen. The aim of research is to evaluate the effect of fertilisation, cultivation, plant number, genorype and irrigation. The analysis of the data in the database of the examined period makes it possible to evaluate the effect of maize yield, as well as that of the crop production factors and the crop year, while the correlations and interactions between these factors were also examined. During the examination of the cultivation treatments, it was concluded that the highest yield was obtained as a result of autumn ploughing, but its effect largely differs in the irrigated and the nonirrigated treatments. Based on our examinations, strip cultivation should be applied periodically (e.g. strip – strip – ploughing – loosening) in areas with favourable soil conditions free from compacted layers. 
In years with smaller, average precipitation supply or when the precipitation was higher than average, higher plant numbers were more favourable. Under drier conditions, but especially in several consecutively dry years, a lower plant number can be recommended which is not higher than 60 thousand per hectare. In the case of favourable water supply, 70-80 thousand plants per hectare can be  used. The yield increasing effect of fertilisation was significant in the case of both non-irrigated and irrigated conditions, but it was much more moderate in the non-irrigated treatment. The extent of weed coverage was significantly affected by the previous crop. In the case of a favourable previous crop (wheat), the weed coverage was significantly lower than after an unfavourable previous crop (maize). In the case of the same previous crop (maize), the extent of weed coverage was mostly determined by the crop year and the extent of precipitation supply. Irrigation is not enough in itself, because if it was not accompanied by intensive nutrient management, yields started to decline.
The results of researhc, development and innovation contributed to the technological method which makes it possible to apply locally adjusted sowing seed, fertiliser and pesticide in a differentiated way, as well as to change the method of operations within the given plot.

160
146
Examination of drought stress of two genotype maize hybrids with different fertilization
53-57

In the growing season of 2019, we analysed stress resulting from climatic factors on maize hybrids of different genotypes, with the aim of gaining a better understanding of the physiological responses of each hybrid, which might support the elaboration of a cost-effective irrigation plan.

Our experiments were carried out at the Látókép Experimental Station of the University of Debrecen on calcareous chernozem soil in a small-plot long-term field trial with strip plot design. In the scope of the experiment, N-fertilizer doses were applied as basic fertilizer and top-dressing in addition to the non-fertilized (control) treatment. The 60 and 120 kg N/ha doses applied as basic fertilizers in the spring were followed by top-dressing in the V6 phenophase with a +30 kg N/ha dose. Measurements were carried out with the involvement of the Renfor early (FAO 320) and Fornad (FAO 420) late maturity hybrids-

The stomata of the plants became more and more closed with the progression of the phenological phases; their stomatal conductance decreased. However, the hybrids responded differently to environmental stress. In the case of the Renfor hybrid, the highest conductance (669 mmol/m2-s) was recorded in the V12 phenophase with the 150 kg N/ha treatment. The stomata were more open due to the high turgor pressure, allowing plants to evaporate properly. The plant was in its worst physiological condition on 2nd July, at the time of the appearance of the last leaf in the case of the 120 kg N dose (224 mmol/m2-s). The value measured in the V12 phenophase has already shown that the stomata were closing due to the self-regulating system of the plant. It would have been necessary to dispense irrigation water following the measurement. This confirms the finding that water stress can be prevented by measuring stomatal conductance.

In the case of the Fornad hybrid, stomatal conductance was the highest on 12th June (630 mmol/m2-s) in the 90 kg N/ha treatment and it was the lowest (183 mmol/m2-s) in VT (emergence of the last leaf) phenophase in the 60 kg N/ha treatment. In this case, the appropriate time for applying irrigation water would have been early July, when the conditions for the plants were still adequate. Subsequently, the stomata began to close due to a reduction of the water resources available to them.

There was a significant correlation between soil moisture and stomatal conductance, as well as between temperature and stomatal conductance.

97
109
The scientific background of competitive maize production
33-46

The effect and interaction of crop production factors on maize yield has been examined for nearly 40 years at the Látókép Experiment Site of the University of Debrecen in a long-term field experiment that is unique and acknowledged in Europe. The research aim is to evaluate the effect of fertilisation, tillage, genotype, sowing, plant density, crop protection and irrigation. The analysis of the database of the examined period makes it possible to evaluate maize yield, as well as the effect of crop production factors and crop year, as well as the interaction between these factors.

Based on the different tillage methods, it can be concluded that autumn ploughing provides the highest yield, but its effect significantly differed in irrigated and non-irrigated treatments. The periodical application of strip tillage is justified in areas with favourable soil conditions and free from compated layers (e.g. strip – strip – ploughing – loosening). Under conditions prone to drought, but especially in several consecutive years, a plant density of 70–80 thousand crops per hectare should be used in the case of favourable precipitation supply, but 60 thousand crops per hectare should not be exceeded in dry crop years. The yield increasing effect of fertilisation is significant both under non-irrigated and irrigated conditions, but it is much more moderate in the non-irrigated treatment.

Selecting the optimum sowing date is of key importance from the aspect of maize yield, especially in dry crop years. Irrigation is not enough in itself without intensive nutrient management, since it may lead to yield decrease.

The results of research, development and innovation, which are based on the performed long-term field experiment, contribute to the production technological methods which provide an opportunity to use sowing seeds, fertilisers and pesticides in a regionally tailored and differentiated way, adapted to the specific needs of the given plot, as well as to plan each operation and to implement precision maize production.

214
177
Effect of plant growth promoting Rhizobacteria (PGPRS) on yield and quality of processing tomato under water deficiency
19-22

Chlorophyll fluorescence was measured of H1015 tomato hybrid with different bacterial treatments (B0–B1–B2–B3) and three irrigation treatments: regular irrigated (RI), deficit irrigated (DI) and non-irrigated conditions (I0). The aim of the experiments was to show the effects of plant growth promoting rhizobacteria on the yield, dry matter and vitamin C content of processing tomato during different irrigation treatments, and measuring the chlorophyll fluorescence during the ripening and development stages. According to the results, none of the bacterial treatments had a statistical effect on the quantity and quality of the tomato and on the chlorophyll fluorescence, only the irrigation. Further studies are needed.

131
174
Alternatives of microclimate control in orchards
209-212

The aim of the study was to find out which of the methods used to avoid damages of late frosts would be the most effective for the fruit growing practice. We tested the antifrost irrigation method in Debrecen-Pallag. For that purpose microjet sprayers are used, which are thrifty and does not need for that purpose large containers. With the aim to secure an even distribution of water, the sprayers are distributed on three levels: above and inside of the crown as well as on the level of trunks. On a large scale, a single microjet above the crown level would be sufficient. By means of a detailed analysis  served to set the optimum intervals between spraying phases: with each 15, 10, 5 and 3 minutes during half a minute. The synchronous presence of water and ice below the freezing point, the released freezing heat plus the water used much above the freezing point
(9–10 °C) altogether maintains the temperature above around 0 °C near the flowers or growing fruitlets, meanwhile, the surrounding air cools down to -8 °C. The effectiveness of the generally used antifrost would be increased substantially by the former application of cooling irrigation, which delays the blooming date. 

103
256
Utilization of urban sewage waters for irrigation of agricultural lands in Ukraine
5-7

The research results of ecological passportization for the municipal treatment facilities sewage disposals were presented (its chemical composition and sanitary measurements). There were determined the availability of the sewage disposals for irrigation and the prospects of use in agriculture.

96
137
The effect of water supply for yield formation of processing tomato
165-168

The effect of irrigation on tomato yield depends on the actual weather conditions, basically the air temperature and precipitation (quantity and dispersion). The irrigated plants gave a significantly higher yield, and rainfed plants showed a yield loss. The optimum water supply treatment gave a significantly higher proportion of lycopene than the control (rainfed) treatment (89% and 80% respectively) in case of Brixsol F1 variety. In spite of this we have not found significant difference in case of Strombolino F1 (cherry type). Content of total poly-phenols measured in Strombolino F1 (cherry type) was significantly higher than that found in the Brixol F1 (normal type). The optimum water supply treatment resulted in a significantly lower content of total polyphenols in both years. Tomato fruits are rich in polyphenols the largest amount of which is rutin from among the identified components.

85
167
Daily soil carbon dioxide flux under different tillage conditions
141-144

Over the last few years, warming of the atmospheric layer near Earth's surface is increasingly experienced and researchers have also established that concentration of numerous greenhouse gases have risen over the past two centuries value. Change is basically a legitimate process - considering atmospheric concentration as well - but the change experienced during the past centuries could not have become this critical without the contribution of human activity. Due to the nature of the greenhouse effect, the result of a very fragile, complex process is experienced currently on Earth, which can be significantly unbalanced even by a slight change. Carbon dioxide emitted from the soil is involved in the global cycle and has an impact on the greenhouse effect. The rise in soil respiration may result in the further intensification of warming. In the scope of the present study, it was examined how carbon dioxide emissions of the soil evolve over a day. The results have been established based on the comparison of the effects of different parts of the day, tillage methods and irrigation.

123
128
Land use, water management
81-87

Due to the prognosed population increase to 9.2 billion people by 2050, the world’s crop production does not have any other chance than to increase production. This demand is a huge challenge for agriculture. Based on the forecasts, the growth rate of production of the main cereals will decrease as a result of the effect of soil, water, the increasing fuel and fertiliser prices and the impacts of climate change. Methods ensuring sustainability have to be preferred. Precision agriculture is the most effective method of crop production. We have to apply minimum cultivation in order to protect the soil surface, maintain its moisture content and increase its water reception ability. In addition to the localised use of fertiliser, sowing seed, irrigation and pesticides, it is also important to apply them in a targeted way on the basis of plot imaging. The use of the new technology results in significant cost saving and it could also reduce environmental load.

149
148
Environmental friendly maize (Zea mays L.) production on chernozem soil in Hungary
133-135

We have been studied the effects of crop-rotation, fertilization and irrigation on the yields of maize in different cropyears characterized
by different water supply (2007 year=dry; 2008 year=optimum) on chernozem soil. Our scientific results proved that in water stress
cropyear (2007) the maximum yields of maize were 4316 kg ha-1 (monoculture), 7706 kg ha-1 (biculture), 7998 kg ha-1 (triculture) in non
irrigated circumstances and 8586 kg ha-1, 10 970 kg ha-1, 10 679 kg ha-1 in irrigated treatment, respectively. In dry cropyear (2007) the
yield-surpluses of irrigation were 4270 kg ha-1 (mono), 3264 kg ha-1 (bi), 2681 kg ha-1 (tri), respectively. In optimum water supply cropyear
(2008) the maximum yields of maize were 13 729-13 787 (mono), 14 137-14 152 kg ha-1 (bi), 13 987-14 180 kg ha-1 (tri) so there was no
crop-rotation effect. In water stress cropyear (2007) fertilization caused yield depression in non irrigated treatment (control=2685 kg ha-1;
N240+PK=2487 kg ha-1). Our scientific results proved that the effects of abiotic stress could be strongly reduced by using the optimum crop
models in maize production. We obtained 8,6-11,0 t ha-1 maximum yields of maize in water stress cropyear and 13,7-14,2 t ha-1 in optimum
cropyear on chernozem soil with using appropriate agrotechnical elements.

67
116
Effect and interaction of crop management factors and crop year on the yield of maize (Zea mays L.)
31-41

The aim of this study was to determine the combination of treatment levels of crop management factors which can optimize and sustain maize yield under varying climatic conditions. The effect of winter wheat forecrop, three tillage systems (Mouldboard-MT, Strip-ST, Ripper-RT), two planting densities (60,000 & 80,000 plants ha-1), three fertilizer levels (N0-control, N80, N160 kg ha-1) with four replications in irrigated and non-irrigated treatments were evaluated over a five year period, 2015–2019. The obtained results revealed that growing season rainfall positively correlated with yield, whereas, temperature negatively correlated with yield. Impact of adverse weather on yield was less severe in biculture, irrigated plots, at lower planting density (60,000), lower fertilizer rate (N80) and in RT and ST, compared to MT. In years with favorable rainfall, yields of MT and RT were significantly (P<0.05) higher than ST. However, in a less favorable year, such as 2015, with 299 mm growing season rainfall and the lowest July rainfall (59% below mean) there was no significant difference (P>0.05) in yield among the three tillage treatments. Higher planting density (80,000), and fertilization rate (N160) in tandem with MT are treatments combination conducive for high yield under favorable climatic conditions, whereas, in years with low rainfall and high temperatures, RT and ST offer alternative to MT for optimum yield with 60,000 plants ha-1 and N80 treatment level. Crop year effect accounted for 20.7% of yield variance, fertilization 35.8%, forecrop 12.8%, plant density 3.4%, tillage 1.2% and irrigation <1%. It is conclusive that with proper selection of the appropriate levels of agrotechnological inputs the adverse effect of weather on yield can be mitigated.

158
200
N-fertilization using „Biofert” in Sustainable Maize Production
30-33

In synthetic fermentation of lysine (amino-acid) a by-product (Biofert) originates which can be characterized by 6% N-content and other ingredients (vitamins, enzymes, micro-elements etc). In small and large plot experiments Biofert was studied in different agroecological (cropyear, soil), biological (genotypes) and agrotechnical (non-irrigated and irrigated; N-splitting etc) conditions in order to obtain information about agronomic efficiency and environmental effects of its applications.
Our results proved that Biofert has the same agronomic efficiency as traditional N-fertilizers (applied in equal doses and splitting), but Biofert has economic and environmental advantages (less N-leaching in soils) for maize production. We found a special interaction between N-supply and irrigation. In maize production (irrigation) with the optimum application of nutrient- (N-fertilization, Biofert) and water- supply we could stabilize maize yields at a high level (11.0-14.0 t/ha) fairly independently of agroecological factors. When applying Biofert in autumn, NO3-N leaching was less in 100-200 cm chernozem soil-layers than for applications of traditional N-fertilizer. There were no differences between different maize genotypes concerning the agronomic efficiency of Biofert. In maize production 120-190 kg/ha N (chernozem soil) and 165 kg/ha N (meadow soil) doses of Biofert were the optimum doses in splitting applications (autumn + spring).

75
102
The Role of Cultivation Systems in Quality Sugar Beet Production
134-138

Producing sugar beet, as it is a demanding field crop, has contributed to the raising standard of plant production. It has an outstanding place among the plants that are cultivated in the intensive plant production system. Rentability of sugar manufacture is determined by the stability of yield and the quality (saccharose content) of sugar beet. In this way, the fundamental interest both of the producers and the processing industry is high yield and quality, year by year. The yield and the quality of the sugar beet are mainly determined by the plant production system, so we studied the effect of fertilization, irrigation and plant protection.

68
145
Impact of fertilisation and the fluctuation of precipitation on the ecophysical and production characteristics of maize
39-44

The aim of this study was to analyse the problems caused by the unfavourable (dry and wet) weather and its consequences in the R1 growth stage of maize (Zeamays L.), as well as their management and the alternatives of preventing yield reduction by using agrotechnical measures fertilisation, irrigation), also, we wanted to examine whether the Chl content measured in the R1 growth phase provides reliable prediction of yield per hectare.

The examinations were carried out in a moderately warm and dry production area at the Látókép Experiment Site of the University of Debrecen, Centre for Agricultural Sciences on calcareous chernozem soil in 2007 and 2008. Six different N doses (0,30,60,90,120,150 kg ha-1) were used in the irrigated and non-irrigated treatments of the field experiment.

The results showed that there is a significant strong positive correlation between Chl content and yield both in the non-irrigated (P<0.001, R=0.777) and the irrigated (P<0.001, R=0.801) treatment. The results of the correlation analyses performed yearly showed that weather factors significantly influence the strength of correlations, but these correlations are always positive.

The Chl content of maize leaves provided a reliable prediction of yield per hectare in the R1 growth stage. In the irrigated treatment, the correlation is always closer than in the non-irrigated treatment.

126
145
Development of technology elements for growing of perennial sorghum
15-17

Optimal sowing time for perennial sorghum under irrigation is when soil temperature at the depth of sowing reaches up to 10–11 °С, harvesting for the green mass has to be done when panicle is situated on the stem in 10 sm from the flag leaf and hight of cut must be 11 sm.

107
123
Mitigation of the effect of secondary salinization by micro soil conditioning
115-119

This research has the general goal to meet the customization of agriculture in small scale farming. We are developing a technique using micro doses of soil conditioners and organic material applied in the root zone of vegetable crops. We expected to change the physical and chemical properties of the affected soil, which has been irrigated with salty water. Two different soil conditioners were tested. A lysimeter experiment including 8 simple drainage lysimeters was set up in the Research Institute of Karcag IAREF University of Debrecen in 2017. The main goal was to study the effect of different soil conditioners on the soil endangered by secondary salinization induced by irrigation with saline water. In order to compare the difference between the treatments, we collected soil samples, water samples, and determined the yields. Chili pepper (Capsicum annuum) was used as an indicator crop during one specific agricultural season. The technique called micro soil conditioning is rational because several reasons. The roles of the technique are various, for example it can serve as a source of carbon or a container for soil amendments and can minimize evaporation. We found this technique not to interfere with the chemical reaction or the interaction with the plants. However, the micro doses of soil amendments had the role to minimize the risk of soil degradation and do not significantly influence soil respiration. In addition, by improving soil properties, soil conditioning increases the leaching of the excess of salts from the root zone. In fact, this technique can decrease the cost of the inputs and improves the production of vegetables, and at the same time mitigates the effect of secondary salinization.

149
114
Development opportunities for storing and displaying of spatial data in long-term experiments
81-86

Long-term experiments are required to evaluate the impact of irrigation, nutrient utilization, and year factor as well as to assess the potential consequences of climate change. However, in the long-term experiment, it may be necessary to display spatial data for each parcel, either for investigation of soil heterogeneity or presentation. This article aims to provide help for researchers working in long-term experiments for storing and displaying spatial data.

After the outlines of each experimental site were measured with GPS, a spatial database has been created in Quantum GIS. Then, a filter script in R statistical environment using RStudio graphical interface was written. The script helps avoid the QGIS data input interface so that large data can be attached to each parcel directly and as a result there is no need for a separate data entry, only the basic statistical database.

The created GIS database can be used in many ways; it can be exported to KML file format that can be displayed using Google Earth. It is possible to view exported KML files in Google Drive with importing them to Google My Maps application, and with that a browser can display the map. With the Google Drive the maps can be shared within the research group, additionally the outlines can be edited and it is possible to upload the measurement data to the attributes table to existing empty table columns. The map created in Quantum GIS can be used for presentation purposes.

105
135
Characterization of Water Resources in Transcarpathia
277-281

Transcarpathia is located in one of the wettest parts of the Ukraine. There are 9429 rivers and creeks in the county with a total length of 19.86 thousand kilometers. The length of 152 rivers exceeds 10 km, 4 exceed 100 km (Tisza, Latorca, Ung and Borsava rivers). The average density of rivers is 1.7 km/km2, which is the highest in the Ukraine. The existing water resources are distributed unevenly in the county. The river with the greatest mass of water is the Tisza. Tisza carries 75% of all existing water resources, the remaining 25% is made up of the water in the river Ung and Latorca. Disregarding the uneven distribution of water resources, 80% of water is used up in the basins of the rivers Ung and Latorca from the water resources of the county, which leads to the overload of rivers.
The main sources of water supply in Transcarpathia: subsurface waters – for the population of cities and settlements, surface and subsurface waters – for the industry, surface waters – for irrigation.
In the interest of protecting existing water resources, it is required to follow current regulations, detecting and averting contaminating sources and establishing water conservation zones.

70
182
Implementation alterantives of the CIVAQUA complex water management program in the Debrecen region
71-73

Hungary is one of the countries in Europe which has the largest amount of water supply because of its geographical conditions. Water comes from the surrounding mountains makes this water supply even more bigger. This precious water base needs to be treated responsibly and the most efficient way. The Civaqua program is a project with the above-mentioned conditions, made by the Local Government of Debrecen and the Water Directory of Trans-Tiszanian Region. This project deals with the exploitation of the East-Main Chanel’s water for social welfare, agricultural and inverimental protection purposes in Debrecen and its agglomeration. The aim of this paper is to give an overall insight into the investment plans of Civaqua program and it is also examines its positive direct and indirect effects on the region.

101
128
Technological and Economic Analysis on the Hungarian Rice Sector
226-233

Hungary lies on the northern edge of rice production area. According to this, the climatic conditions area not perfect for this species. The production area of rice involves typically the poorer quality soils, however these meet the requirements of rice. In Hungary exclusively domestic types are grown which have high yield and good quality and these are usually wore successful than foreign types. On the other hand, these Hungarian types should be improved considering safety in production. Nowadays, rice is grown in large scale companies with 300-1400 hectares, where production technology already exists, machinery is suitable, however the latter one a little bit old.
The average yields of the analysed companies were 3-4 t/ha in the past few years, which were a little bit above the national averages. The operating cost per hectare is almost 200 thousand HUF, from which the main part is the cost of machinery (35%) and the material cost (34%). The main part of the latter one is the irrigation costs (30%). The average cost, calculated from the total production cost, is 80 thousand HUF/t. Considering the above-mentioned costs and the price of rice (75 thousand HUF/t) it can be stated that the profitability of the rice sector is not the best, the cost rated profitability is -6.6%. According to the results of this analysis possibilities for the increase in profitability and improvement are increased subsidies and market price, as well as genetic improvement.

37
144
The effect of water-stress on the mineral nutrition of fruit plantations
187-192

Besides agro-techniques the climatic conditions play an important role in agricultural production. Weather extremes are
significant hazards to many horticultural regions all over the word. It has a profound influence on the growth, development and yields of a
crop, incidence of pests and diseases, water needs and fertilizer requirements in terms of differences in nutrient mobilization due to water
stresses. Nowadays, the weather extremes cause more and more problems and significant hazards to many horticultural regions in Hungary.
The aim of this study is to explore the problems of nutrient uptake followed from climatic anomalies and response it. In this study
we focus on water supply problems (water-stress).
Reviewing the effects and nutrient disorders caused by climatic anomalies, the following statements can be taken:
· Nutrient demand of trees can be supplied only under even worse conditions.
· The most effective weapon against damage of climatic anomalies is preventative action.
· Proper choice of cultivars, species and cultivation should provide further possibilities to avoid and moderate the effects of
climatic anomalies.
· Fruit growing technologies especially nutrition should be corrected and adjusted to the climatic events as modifier factors.
· The role of foliar spraying, mulching and fertigation/irrigation is increasing continuously.
· Urgent task of the near future is to correct and adjust the tested technologies of fruit growing according to these climatic events as
modifier factors.
Optimal nutrient supply of trees decreases the sensitivity for unexpected climatic events. To solve these problems supplementary, foliar
fertilization is recommended, which adjusted to phonological phases of trees. Moreover, mulching is regarded as an excellent water saving
method.

66
86
<< < 1 2 3 4 > >>