Search

Published After
Published Before

Search Results

  • Relationships between nutrientsupply, genotype and some physiological properties of winter wheat
    141-145
    Views:
    131

    The chlorophyll content (SPAD), leaf area index (LAI) and leaf area duration (LAD) of three winter wheat varieties have been investigated on a chernozem soil. Three winter wheat varieties (GK Öthalom, Pannonikus and Genius) in three different nutrient-supply levels have been involved in our experiment in the crop-year of 2010/2011. The investigated physiological properties have been set against to the yield results. Upon the results of this comparison it has been stated that there is a close relationship between the investigated physiological properties and yield averages. The SPAD-values showed a growing tendency parallel to the growth of the nutrient-supply levels. The varieties have the highest SPAD-values at the nutri ent-level of N120+PK. Compared to the yield averages we have stated that varieties that have higher SPAD-values have realized higher yields as well. Higher nutrient dosages have increased in the leaf area. In case of all the three varieties the highest LAI-values were measured at the flowering stage (23. 05.) in the treatment whit N120+PK. Varieties with higher leaf area have produced higher yields as well. Parallel to the increasing nutrient-supply levels the value of leaf area duration increased as well. We measured the highest LAD-values in the treatment of N120+PK nutrient-level. By the LAD-values it can be stated that more durable and larger leaf area has been produced in the flowering and ripening phenophases, due to the higher nutrient-dosages. Analysing the relationships between the results it can be stated that there is a strong positive relationship between fertilizer treatments and SPAD-, LAI- and LAD-values. The genotype showed a strong positive correlation to SPAD-values. Yield averages showed strong positive correlation to SPAD-, LAI- and LAD-values as well.

  • Comparative analysis on the fertiliser responses of Martonvásár maize hybrids in long-term experiments
    111-117
    Views:
    68

    The results of experiments carried out in the Agricultural Research Institute of the Hungarian Academy of Sciences clearly show that in the case of hybrids grown in a monoculture greater fertiliser responses can be achieved with increasing rates of N fertiliser than in crop rotations. In the monoculture experiment the parameters investigated reached their maximum values at a rate of 240 kg/ha N fertiliser, with the exception of 1000-kernel mass and starch content. In both cases the starch content was highest in the untreated control, gradually declining as the N rates increased. Among the parameters recorded in the crop rotation, the values of the dry grain yield, the 1000-kernel mass, the protein yield and the starch yield were greatest at the 160 kg/ha N fertiliser rate, exhibiting a decrease at 240 kg/ha. Maximum values for the protein content and SPAD index were recorded at the highest N rate. It is important to note, however, that although the N treatments caused significant differences compared to the untreated control, the differences between the N treatments were not significant.
    In the given experimental year the values achieved for the untreated control in the crop rotation could only be achieved in the monoculture experiment at a fertiliser rate of 160 kg/ha N, indicating that N fertiliser rates could be reduced using a satisfactory crop sequence, which could be beneficial from the point of view of environmental pollution, crop protection and cost reduction.
    The weather in 2006 was favourable for maize production, allowing comparative analysis to be made of the genetically determined traits of the hybrids. Among the three hybrids grown in the monoculture experiment, Maraton produced the best yield, giving maximum values of the parameters tested at a fertiliser rate of 240 kg/ha N. The poorest results were recorded for Mv 277, which could be attributed to the fact that the hybrid belongs to the FAO 200 maturity group, while the other hybrids had higher FAO numbers. Maraton also gave the highest yields in the crop rotation experiment at the 160 kg/ha N level. All three hybrids were found to make excellent use of the natural nutrient content of the soil.
    It was proved that the protein content of maize hybrids can only be slightly improved by N fertilisation, as this trait is genetically coded, while the starch content depends to the greatest extent on the ecological factors experienced during the growing season.

  • Application of mycorrhizae and rhizobacteria inoculations in the cultivation of processing tomato under water shortage
    111-118
    Views:
    43

    The effect of mycorrhizal fungi and plant growth promoting rhizobacteria on some physiological properties, yield and soluble solid content (Brix) of ‘Uno Rosso’ F1 processing tomato was studied under water scarcity. Inoculation was performed with mycorrhizal fungi (M) and rhizobacteria preparation (PH) at sowing (M1, PH1) and sowing + planting (M2, PH2). The treated and untreated plants were grown with regular irrigation (RI = ET100%), with deficit irrigation (DI = ET50%) and without irrigation (I0). In drought, the canopy temperature of plants inoculated with arbuscular mycorrhizal fungi (M1, M2) decreased significantly, however, the decrease was small in those treated with the bacterium (PH1, PH2), while the SPAD value of the leaves of plants treated only with Phylazonit increased significantly. On two occasions, inoculations (M2, PH2) significantly increased the total yield and marketable yield, however, under water deficiency, a higher rate of green yield was detected than untreated plants. In dry year using deficit irrigation, the one-time inoculation (M1, PH1) provided a more favorable Brix value, while the double treatments reduced the Brix. In moderate water scarcity, the use of mycorrhizal inoculation (M2) is preferable, while under weak water stress, the use of rhizobacteria inoculation (PH2) is more favorable.

  • The impact of applying foliar fertilizers on the health condition of maize
    105-109
    Views:
    157

     

    The nutrient supply of plants is becoming more important in plant protection since the appropriate condition of plants can be ensured by optimal and satisfactory nutrient supply to avoid nutritional deficiency diseases. Due to the extreme weather conditions, plants are forced to face several stress factors, which leads to deterioration of the plant health. The increasing occurrence of droughts poses threat to nutrient uptake through the roots since all the nutrients can be accessible to the plants only if they are in dissolved form in the soil – which is not possible in the absence of water. Therefore, the importance of foliar fertilizer is becoming a more and more significant part of the nutrient supply, because with the help of this technology the development of any nutrient deficiency can be prevented.

    In this experiment, we focused on the efficiency of two different foliar fertilizers on maize.  Foliar fertilizers were applied two times, once in the stage with 8 leaves and tasseling phenophase of the maize. To verify the efficiency of the foliar fertilizers, the chlorophyll content of untreated and treated plant’s leaves was measured after each application. Moreover, the length and diameter of maize cobs, thousand kernel weight, protein, oil and starch content were also measured, and the results were compared to the untreated (control) ones. According to the results, in all aspects significant differences were observed and due to the laboratory analysis of leaves, in the case of magnesium and zinc supply the foliar fertilizers were able to prevent the development of nutrient deficiency.

  • Study of some physiologic properties of different genotype sweet corn hybrids
    105-110
    Views:
    95

    The effect of nutrient-supply (control, N120+PK) and two different genotypes on the physiologic properties of sweet corn has been investigated in the crop-year of 2011 on chernozem soil in the Hajdúság region. The experiments were carried out at the Experimental Station of the University of Debrecen in Debrecen-Látókép. The experiment was sewn in two different sowing times: the 21st April can be considered as an early, while the 19th May as a late sowing time. The two involved hybrids were Jumbo and Enterprise. The applied plant density was 65 000 plants per hectare.
    Our aim with this experiment was to study the plant production, just as the main affecting factors of its development and dynamics, like nutrient-supply and genotypes. We aimed to study and analyse the relationships between these factors and plant production. In this study following parameters were measured and calculated: photosynthetic activity, chlorophyll-content (SPAD-value), leaf area index (LAI) and leaf area duration (LAD). Regarding the analysis of photosynthetic activity values no obvious relationship between the measured values and the applied hybrids, just as nutrient-supply has been revealed. 
    Analysing the SPAD-values it can be stated that the chlorophyll-content of the measured leaves showed an increasing tendency due to the nutrient-supply. The highest values have been measured in the intensive cob development phase of the early sowing time plots.
    Regarding the LAI-values we have found significant differences between the fertilizer treatments in both sowing time treatments. In case of the leaf area duration values – that is derived from the LAI values – nutrient-supply has positively affected the duration of the assimilation area.

  • Water relations composition among Egyptian cotton genotypes under water deficit
    5-15
    Views:
    153

    Background: water shortage is one of the major factor effects on growth characters and yield of most crops. Objective: this study was conducted to get to know the reactions of some Egyptian cotton genotypes to water deficit. Methods: The genetic materials used in this study included thirteen cotton genotypes belonging to Gossypium barbadense L., from the Cotton Research Institute (CRI), which was devoted to establishing the experimental materials for this investigation. Results: the ratio of GCA/SCA was less than unity for all studied indices, indicating predominance of non-additive gene action (dominance and epistasis), which is an important in exploitation of heterosis through hybrid breeding. Results: The data showed significant reduction in water relationship characters for all parental genotypes under stress conditions. The Egyptian variety Giza 68 gave high values for most water relationship characters. Data revealed that the greater the value of tolerance index is, the larger the yield reduction is under water deficit conditions and the higher the stress sensitivity is becoming. The parental genotypes Giza 96 showed the highest reduction in yield under water deficit conditions. At the same time, the cross combination Minufy x Australy showed higher values of yield reduction followed by the combinations Giza 67 x Australy. Of the male parents, the Russian genotype 10229 recorded the best GCA values for most water relationship characters. At the same time, the female parents, the old Egyptian genotype Giza 67 recorded the best values and exhibited good general combined for most water relationship characters. The cross combinations Giza 86 x Pima S6, Giza 77 x Pima S6, Giza 94 x Dandra and Giza 96 x Australy showed significant desirable SCA effect for most characters. Conclusion: relative water content %, osmotic pressure, chlorophyll and carotenoids content indicates better availability of water in the cell, which increases the photosynthetic rate. Also, the higher level of proline accumulation in the leaves which was recorded under deficit water suggests that the production of proline is probably a common response of plant under water deficit conditions.

  • Response of maize seedlings to the latent zinc deficiency under different Fe/Zn rati
    125-128
    Views:
    89

    Zinc (Zn) deficiency is a critical nutritional problem for plants and peoples all over the world. Almost half of the world’s cereal crops are deficient in Zn, leading to poor crop yield. In this study, the effect of different Fe/Zn ratio on some physiological parameters of maize seedlings were investigated on the dry matter of shoots and roots and their ratio, SPAD index and the total length of shoots. The relative chlorophyll contents significantly decreased under increasing Fe given to the Zn deficient. The results showed that the different Fe/Zn supplies decreased the total length of shoots - ranging from 9% to 65% - by latent Zn deficiency. Corresponding to several scientific findings, it was observed that the non-optimal Fe/Zn ratio of tissues take part in the evolution of latent Zn deficiency in the case of high Fe concentration.

  • Examination of the effect of pelleted poultry manure products on a sunflower test plant in a laboratory model experiment
    83-88
    Views:
    164

    Sunflower (Helianthus annuus L.) is one of the most important oil plants in Hungary, with a sown area of more than 627.000 ha in 2019. Sunflower cultivation is primarily important for use in the oil industry, but its role in feed and beekeeping cannot be neglected either. Sunflower adapts well to different production areas in terms of soil demand, yet, as important fact, it must be grown on soils with poorer conditions with intensive nutrient replenishment. From the agri-environmental point of view, in addition to the use of pelleted poultry manure products, which are also new to the consumer market, is of paramount importance. Their advantages include a wide range of nutrients as well as a soil structure improving effect.

    In our research, we investigated the starter effect of pelleted poultry manure products applied at different doses (200 kg ha-1 and 400 kg ha-1) on sandy soil with humus using a sunflower plant. The aim of our research to investigate the effect of using pelleted fertilizer products as starter fertilizers on sunflower plant germination, and investigate the effect of poultry manure products on soils.

    Based on our results, it can be stated that the pigment content (chlorophyll and carotenoid content) was positively influenced by the higher dose treatments (400 kg ha-1), thus increasing the photosynthetically active leaf area. Compared to the control, the carotenoid content in the test plants of the treatments increased, and the differences of this treatment proved to be significant (p<0.05). Our experiments supported the beneficial effect of pelleted poultry manure-based products in the soil-plant system.

  • Possible alternatives in crop nutrition
    109-112
    Views:
    92

    The protection of the environment is our common task. All pollution that exposes our soils, plants or the environment – as taken in any proper or extended sense – will appear sooner or later in the food chain and in human beings who are on the top of the food-chain pyramid. The aim of our work is to give a brief overview of the effects of selected industrial wastes on the physiological parameters of corn plants. Sewage sludge and lime sludge were examined. These materials contain lots of useful element for plants (e.g. iron, phosphorus, potassium, zinc). However, their aluminum, chrome and lithium contents are also considerable. The element contents in sewage sludge and the filtrates of lime sludge, as well as the dry matter accumulation and relative chlorophyll contents, were measured. The disadvantageous and advantageous physiological effects of the examined materials were confirmed. The compensation effect of the environment is excluded; however, the neutralization of environmental impacts is not infinite under natural circumstances.

  • Analyses of a few physiological parameters of hybrid wheat in the case of different nitrogen supply levels
    49-53
    Views:
    167

    The winter wheat is one of the most determinant crops because its role was always important in human’s life. To increase the average yield there are several possibilities, which are still not clear fields of agricultural plant production. Our main goal was to examine the responses of winter wheat genotypes to different amounts of nitrogen supplies. The sowing area of hybrid wheats are increasing, they may have different nutrient nitrogen utilization compared to varieties, and the question arose if it is possible to achieve same yield at lower nitrogen fertilizer application or not.

    The present study analyzes the results of winter wheat (Triticum aestivum L.) from tillering growing stage. Under controlled conditions three different wheat hybrids were grown (Hywin, Hystar, Hybiza) with two different amounts of nitrogen supplies (optimal and the fourth part). The dry matter accumulation, relative chlorophyll content and nitrogen content were measured in order to draw conclusions from the different supplies of nitrogen for winter wheat genotypes and their physiological plasticity.

  • Physiological examination on cadmium sensitvity of some maize and sunflower varieties
    169-173
    Views:
    94

    Cadmium is one of the most dangerous heavy metals, which may cause serious problems in certain physiological processes of living organisms even in small amounts. In our work we analysed how cadmium affects some physiological parameters of different maize and sunflower hybrids. The chlorophyll contents and the morphological changes of the root were examined. We received different results in terms of the cadmium tolerance of these two plants.

  • Effects of combined nutrient supply treatments on some physiological parameters of autumn wheat
    241-251
    Views:
    136

    The Fleischmann Rudolf Research Institute in Kompolt is not only famous for plant breeding but the institute also surveys the effects of different nutrient supply methods since 1918. In 2017, we joined this research supported by EFOP 3.6.1 project. Our aim was to investigate photochemical processes – which is one of the most determinant in case of yield – of crops by in vivo field measurements. We measured the chlorophyll content of leaves using Minolta SPAD 502. We used miniPAM fluorometer to determine actual photochemical efficiency and non-photochemical quenching of PSII during natural light conditions and also to evaluate the pigment (chlorophylls and carotenoids) and water content of leaves we applied field spectrophotometer (ASD FieldSpecPro 3). We utilized these methods by various treatments (1. treatment with soil bacteria + head and base fertilizer; 2. treated by only head fertilizer; 3. treated by only base-fertilizer) in field experiment of autumn wheat (4.1–2.43–1.19 ha) in June, 2017. The difference between treatments was clearly detectable. In the case of the first treatment, physiological processes were more intense and the ripening occurred earlier. The obtained yield was the highest in the case of the area treated by soil bacterial. Based on the results, the first treatment can be recommended in practice.

  • The role of non-optimum Fe-Zn ratio in the development of latent zinc shortage in cucumber (Cucumis sativus L.)
    7-11
    Views:
    126

    The general micronutrient deficiency of the soils influences the quality of food production which causes human health problems in several countries as well. The non optimal Fe-Zn ratio can cause latent zinc deficiency – which the plants response in the function of their sensitivity –what has no visual symptoms or the plant shows deficiency symptoms in case of appropriate zinc supply. This phenomenon can cause significant decrease in the crop yield.

    The aim of this study was to prove the role of non optimal Fe-Zn ratio in the evalution of latent zinc deficiency.

    The non optimal Fe-Zn ratio caused decrease in the number of the leaves, the number and length of the internodes, the relative chlorophyll contents and in the dry matter production. According to the results the non optimal Fe-Zn ratio caused difficulties in the metabolism, which decreased the examined plant physiological parameters in the most cases. It can be concluded if there are higher iron contents in the tissues than zinc it can result latent zinc deficiency.

  • Integrated nutrient supply and varietal difference influence grain yield and yield related physio-morphological traits of durum wheat (Triticum turgidum L.) varieties under drought condition
    111-121
    Views:
    106

    The ever-growing world population entails an improvement in durum wheat grain yield to ensure an adequate food supply, which often gets impaired by several biotic and abiotic factors. Integrated nutrient management, such as nitrogen rate × foliar zinc × sulphur fertilization combined with durum wheat varieties were investigated in order to examine the dynamics of yield and yield related physio-morphological traits under drought conditions. The four durum wheat varieties, three-level of nutrient supply (i.e. control, sulphur, and zinc), and two nitrogen regimes (i.e. zero and 60 kg ha−1) were arranged in split-split plot design with three replications. Zinc and sulphur were applied as foliar fertilisation during the flag leaf stage, both at a rate of 3 and 4 liters ha-1, respectively. Results showed existence of genetic variability for grain yield, plant height, NDVI, SPAD and spike density. Foliar based application of zinc and sulphur at the latter stage improved the plant height. Nitrogen fertilized varieties with lower spike numbers showed to better yield formation. Co-fertilization of nitrogen and zinc improved grain yield of responsive varieties like Duragold by about 21.3%. Spikes per m2 were statistically insignificant for grain yield improvement. It could be inferred that the observed positive effect of sulphur, nitrogen and zinc application on physio-morphology and yield formation substantiates the need to include these essential nutrients in the cultivation system of durum wheat.