Search

Published After
Published Before

Search Results

  • Effect of extreme crop year on soil moisture in maize
    35-40
    Views:
    66

    We examined the change of the time of water balance of soil in 25 years old experiment, on chernozem soil, in different croprotation systems (mono-, bi- and triculture) in two extreme cropyear in 2007 and 2009 in maizestock.
    According to our findings the values of waterdeficit of soil of maizestock were about 100 mm before the sowing time that grew because of considerable deficit of precipitation and high average temperature in months of summer. Values of waterdeficit achieved at the end of August the maximum and lessed a little bit to end of crop time. Decrease of waterstock stopped because of irrigation treatments in irrigated plots but the difference between two irrigation treatments (Ö1-Ö3) vanishedat the end of summer, waterdeficit were higher with 17 mm in monoculture in irrigated plot than value of not-irrigated plot. Considerabler precipitation in Jun effected on waterbalance of soils of three of crop-rotation systems favourable, rapid waterloss starting to april began to lessenat the end of May and started to increase from early in July. Precipitation in Jun had positiv effect on yield also.

  • Effects of Tillage Systems on Physical Status and Organic Matter Turnover of the Soil
    42-45
    Views:
    154

    The cultivation technology for those plant, that play a key role in arable land production need to be renewed in order to reduce production costs and to protect arable land. The modernisation of technologies can only be achieved by applying appropriate tillage systems. Our measurements were carried out on chernozem soil with lime deposits at the Látókép Experimental Station of the Center for Agricultural Sciences, Debrecen University, in long term tillage experiments set up in 1989. We examined the typical physical parameters, the albedo, field capacity, the bulk density of the soil, organic carbon content (humus %) and the measured pH-values in the water solution within the two tillage variations. We have also modelled nitrogen cycle formation in different treatments.
    A significant difference occured between the albedos of the two soils, which may be the result of significant amounts of stem remaining on the surface in the case of the reduced tillage method. The yellow, waxy stem of maize reflects 21% of the sun’s rays, especially at the beginning of the vegetation period, when its decomposition has only just started. This delys the warming up in early spring, which delays the sowing time of maize and reduces evaporation. In the two tillage variations, the water management characteristics do not differ practically, the wilting point field capacity are in accordance. In reduced tillage methods, the so-called „plough-pan” can be well measured at 15-20 cm, while in winter ploughing it is at 30 cm. The humus % of the soil does not differ in the two tillage variations, but due to the difference in bulk density this means a different humus and organic nitrogen content. The organic nitrogen content is greater in the reduced tillage method. On the basis of pH value evaluations, we could not detect significant differences in the two tillage variations. The organic nitrogen content of areas where reduced tillage method was applied is higher than in areas where conventional winter ploughing was applied.

  • The Effect of Forecrop and Plant Protection on the Pathology Parameters and Yields of Winter Wheat
    84-89
    Views:
    88

    We carried out our experiment in the cropyears of 2000/2001, 2001/2002 and 2002/2003, on calcareous chernozem soil, at the experimental site of the Debrecen University Farm and Regional Research Institute, at Látókép. We examined the disease resistance and the yield quantity of Mv Magvas variety by adopting different forecrops and plant protection technologies, at 30+30 N level and at normal cereal row spacing. We applied two forecrops (wheat and pea) and two plant protection technologies (extensive and intensive). We measured the rate of infection by population survey in the first ten days of June.
    In the course of our examinations, we found, that the rate of powdery mildew infection was higher in the thicker population sown after pea forecrop in all three years, as powdery mildew is not a typical cereal disease.
    The infection rate of leaf mildew and DTR (Dreschlera tritici-repentis) was higher after wheat forecrop in all examined years, because these are typical wheat diseases and infection centres in the soil promote the spreading of these diseases. However, it was possible to parry the adverse effect of forecrops by intensive plant protection.
    Due to the chernozem soil, wich has good water management features, and due to the good preparation of the seedbed, the effect of forecrops on yield quantity did not appear in the examined years. The quantity of the yield was only slightly larger after pea forecrop in the cropyears of 2000/2001 and 2002/2003 than after wheat. Nonetheless, the data of technical literatures state that the yield quantity can be larger, even by 15-20%, after pea forecrop.
    In the course of intensive plant protection technology, we applied systemic pesticides, while in the course of environmentally sound technology, we used contact pesticides of sulphur content. In those populations that were treated with environmentally sound plant protection technology, infection rate was higher in all three years.
    Yield quantities were somewhat lower in the course of applying extensive, environmentally sound technology, because diseases appeared in these populations to the higher degree. Powdery mildew does not, but leaf mildew and Dreschlera tritici-repentis have a significant yield decreasing effect. With appropriate, well-selected fungicides, we were able to keep every leaf diseases well in hand, and the rate of infection was almost independent of the influence of the breeding year.

  • Economic questions of maize production on different soil types
    289-292
    Views:
    103

    The requirements and objective of cultivation are in constant change. For example, different cultivation systems are developed for the purpose of soil protection, the preservation of its moisture content and on soils with various precipitation supply or production site conditions. Traditionally, one of the most important cultivation aims is crop needs. Further cost saving in fertilisation and crop protection can only be achieved by reducing the quality and quantity of production or it cannot be achieved at all. Furthermore, the costs can be significantly reduced by means of the rationalisation of cultivation. Energy and working time demand can also be notably reduced if ploughing is left out from the conventional tillage method. The key requirement of economicalness is to perform the cultivation at the optimal date, moisture level and the lowest possible cost.
    Within production costs, the cost of cultivation is between 3–17%, while they are between 8–36% within machinery costs. It is the vital condition the usability of each technological method to progressively reduce costs. Our evaluation work was carried out with the consideration of the yield data obtained from cooperating farms and the experiment database of the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen. Three technological methods (ploughing, heavy cultivator and loosening tillage) were used on several soil types which differ from in terms of cultivability (chernozem, sandy and sandy clay soils) from the economic/economical aspect. We examined the sectoral cost/income relation of maize production as an indicator plant. The maize price during the analytical period was 45 thousand HUF per t. On chernozem soils, the production of maize can be carried out on high income level, while maize production on sandy soils has a huge risk factor. The role of cultivation is the highest on high plasicity soils, since they have a huge energy
    demand and the there is a short amount of time available for each procedure in most cases.

  • Examination of the Binding Forms of Cu, Zn, Pb and Cd
    161-165
    Views:
    27

    Cu, Zn, Pb and Cd binding forms were examined on brown forest soil with clay illuviation, on clcareous chernozem and on meadow soil type. We applied one metal ion and the mixture of all at two different concentrations on the soils. Our results show all the four metal ions significantly bound to the mobile fraction on brown forest soils, while on calcareous chernozem and on meadow soil type they were mainly in other fractions. The higher heavy metal load and the presence of other metal ions increased the ratio of the mobile binding form.

  • The impacts of spring basal and side dressing on maize yield
    83-86
    Views:
    172

    The yield potential of maize is very high. According to Tollenaar (1983), maize yield potential is as high as 25 t ha-1 (absolute dry yield) which is the highest among all cereals. In order to fully utilise this high yield potential, proper nutrient replenishment is of chief importance among all agrotechnical factors.

    The aim of research was to examine the effect of nitrogen fertiliser applied as basal and side dressing on maize yield.

    The measurements were performed at the Látókép experiment site (47° 33’ N, 21° 26’ E, 111 m asl) of the Centre for Agricultural Sciences of the University of Debrecen on mid-heavy calcareous chernozem soil with deep humus layer in an established experiment in 2011, 2012 and 2013. The trial design was split-split-plot with two replications.

    Based on the experiment results, it can be established that the nutrient uptake of maize is greatly dependent on the amount of water store in the soil. From the aspect of the development of the maize plant and water supply, the most determinant factor was the distribution of precipitation over the growing season and not the amount precipitation. This is shown by the fact there was only 276 mm precipitation – which was favourably distributed – in 2012 to increase the availability of nutrients and the main average was the highest in this year (14.394 t ha-1).

    Spring basal dressing helped maize development in all three years even on chernozem soil which is well supplied with nutrients. Although the effect of side dressing did not result in any yield increase, it could still contribute to mitigating the stress effects caused by environmental factors. Altogether, nutrient supply adapted to the various development stages of maize can favourably affect the success of maize production.

  • N-fertilization using „Biofert” in Sustainable Maize Production
    30-33
    Views:
    94

    In synthetic fermentation of lysine (amino-acid) a by-product (Biofert) originates which can be characterized by 6% N-content and other ingredients (vitamins, enzymes, micro-elements etc). In small and large plot experiments Biofert was studied in different agroecological (cropyear, soil), biological (genotypes) and agrotechnical (non-irrigated and irrigated; N-splitting etc) conditions in order to obtain information about agronomic efficiency and environmental effects of its applications.
    Our results proved that Biofert has the same agronomic efficiency as traditional N-fertilizers (applied in equal doses and splitting), but Biofert has economic and environmental advantages (less N-leaching in soils) for maize production. We found a special interaction between N-supply and irrigation. In maize production (irrigation) with the optimum application of nutrient- (N-fertilization, Biofert) and water- supply we could stabilize maize yields at a high level (11.0-14.0 t/ha) fairly independently of agroecological factors. When applying Biofert in autumn, NO3-N leaching was less in 100-200 cm chernozem soil-layers than for applications of traditional N-fertilizer. There were no differences between different maize genotypes concerning the agronomic efficiency of Biofert. In maize production 120-190 kg/ha N (chernozem soil) and 165 kg/ha N (meadow soil) doses of Biofert were the optimum doses in splitting applications (autumn + spring).

  • Activity of some enzymes, participating in nitrogen compounds transformation in chernozem, polluted by fluorine compounds
    99-104
    Views:
    86

    Contamination of chernozem by fluorine compounds variously affects those enzymes (urease, asparaginase, glutaminase, arginase, amidase), which takes part in the metabolism of nitrogen-bearing organic compounds. In broken soils the inhibited desaminisations is stronger, than enzymatic hydrolysis of asparagine and arginine. The features of seasonal dynamics of change activity of urease and correlation dependence of its activity from some physical and chemical soils properties are described. These tendencies well comport with the results of model experiments. At minimum HF influence there is inhibition of processes of monohydrocarboxylic acids desaminisation, hydrolytic breaking up of arginine and glutamine. By a side with this there is activating of urea and asparagine breaking up processes on the initial stages of toxicant influence. The study of kinetics of process of urea enzymatic hydrolysis in chernozem at the different level of HF influence showed changes of initial and maximal velocity of enzymatic reaction, and also Michaelis-Menten constant. 

  • Effect of N, P and K fertilisers and their interactions in a long-term experiment on winter barley (Hordeum vulgare L.)
    87-92
    Views:
    165

    The aim of this work was to analyse the effect of K, P and N supplies on the yield of winter barley in a long-term mineral fertilisation experiment with clearly distinct soil nutrient supply levels in order to develop fertilisation guidelines for winter barley growers. The experiment was set up in 1989 on a chernozem meadow soil calcareous in the deeper layers, applying all possible combinations of 4 levels each of N, P and K fertiliser, giving a total of 64 treatments.

    The results of analyses performed in 2011 and 2012 can be summarised as follows:

    1. In 2011, when rainfall supplies were deficient in the shooting phase, improved K supplies (324 mg kg-1 AL-K2O) increased the grain yield, but in 2012, when rainfall supplies were more evenly distributed, K supply levels in the range 210–335 mg kg-1 AL-K2O had no significant influence on the yield of winter barley.
    2. An analysis of the P treatments revealed that, compared to the 119–133 mg kg-1 AL-P2O5 level (P0), better P supplies (186–251 mg kg-1) led to a significant increase in the grain yield.
    3. In both years rising N rates significantly increased the yield up to an annual N rate of 160 kg ha-1.

          4. A K×N interaction could only be detected in the nutrient supplies of winter barley in 2011. The yield-increasing effect of N fertiliser was more    pronounced at better K supply levels, while K fertiliser led to higher yields in the case of better N supplies.

  • The Examination of Some Determining Elements of Efficient Practical Sweet Corn Growing
    81-85
    Views:
    123

    We did the detailed agronomy examination and assessment of sweet corn cropping technology by analysing the data of TONAVAR Ltd. The Ltd. developed a special sowing construction which is based on band application of main sowing and double growing. In main sowing they use super sweet hybrids, and in double growing they use normal sweet varieties. In double growing sugar peas and the sweet corn can be cultivated together successfully. In every two years appearing sugar peas has a good effect on the sweet corn growing in monoculture. At the same time
    the long-term successfulness of this questionable onto the illnesses of the peas because of the considerable sensitivity.
    According to our examinations in main sowing the optimal period is between May 1. and 30., and in double growing the optimal period of sowing is between June 1. and 20. The optimal plant density is different too for the two sowing time. For super sweet hybrids the optimal plant number is 60-63 thousand/ha and for the normal sweet that is 65 thousand/ha.
    Our examinations show that soil pest (defence with soil sterilisation in sowing time), Diabrotica virgifera, Helivoverpa armigera, Ostrinia nubialis are the greatest danger for the sweet corn quantity and quality.
    The use of herbicides is the most efficient in the postemergens in main sowing and preemergens in second crop.
    Our examination shows that the efficient sweet corn growing cannot be imagined without irrigation. The most efficient irrigation is in main sowing in the critical fenophase of crop time. In double growing the initial irrigation, and the crop irrigation are the most efficient. Based on the production data verifiable that beside the application of the discribed growing technology in the 2005-2007 years the average yield was 20,9t/ha of main sowing, and 17,8t/ha of second crop on chernozem soil in the Hajdúság. 

  • Az NPK-trágyázás hatása a kukorica tápelemfelvételének dinamikájára, öntözött és nem öntözött viszonyok között
    23-27
    Views:
    155

    The effect of NPK-fertilization on the dynamics of nutrient uptake of maize (Zea mays L., cv. Clarica) was examined on chernozem soil under irrigated and non-irrigated conditions in a field experiment.
    The following results were made:
    • the element concentrations in the plant decreased over time,
    • there is no difference between the dynamics of nutrients on irrigated and non-irrigated sites because rainfall was satisfactory for plants in vegetation period,
    • the N doses not only significantly increase the nitrogen content in maize, but also have a noticable effect on Ca and Mg concentrations,
    • because of the acidifying effect of N-fertilizers, increasing the amount of N-fertilizer increased the Mn, Zn, Cu content of the plants,
    • the P doses have a significant effect on the maize P and N content and the Zn concentration of the plant via P-Zn antagonism in the soil,
    • as the high K doses treatments alter the ion ratios in the soil, the Ca, Mg content of the plant decreased.

  • The relationship between the nutrient supply and the yield of maize hybrids with different genetic traits on chernozem soil in variant years
    27-31
    Views:
    187

    The experiments were set on lime-coated chernozem soil in 2013 and in 2014, in our study four hybrids were included with different FAO number. We studied the effect of NPK fertilization and row spacing on the yield. The fertilizer doses were based on a 25-year longterm experiment. Compared to control, the N40 +PK treatment has also achieved a significant yield increase, although some hybrids responsed with yield loss to the increasing fertilizer doses; this effect was observed especially in 2014. The majority of hybrids reached higher yields in both years using the 50 cm row spacing. The water release of hybrids was measured weekly during the maturation, at the same time points. The rainy September slowed ripening and the water release of the hybrids in 2013, so the grain wet content at harvest showed higher values. The moisture contents were increased for some hybrids, in spite of the positive and favorable dynamic of water loss.

  • Examination of the Effect of Cropyear on the Yield Potential and Yield Stability of Winter Wheat Varieties
    62-67
    Views:
    100

    Variety selection is one of the most important, determinative elements of sustainable winter wheat production. Yield potential, and yield stability are the most important elements in the variety selection of winter wheat, but baking quality parameters play an important role, too.
    Several winter wheat varieties were tested for yield and yield stability on chernozem soil in the Hajdúság (in the eastern part of Hungary), in the 2001-2002-2003-2004 cropyears. The management factors were the same for all cropyears. 15 varieties in early the maturity group, 14 varieties in the middle maturity group and 4 varieties in the late maturity group were tested in the above mentioned cropyears. The climatic conditions were average in 2001, dry in 2002, extremely dry in 2003, and very favourable in 2004.
    We obtained 5298-6183 kgha-1 yield from early maturity varieties, 5683-6495 kgha-1 from middle, 5694-6031 kgha-1 from late ones in the average of four years. The cropyears had strong influence on the yields, even on chernozem soil, and were characterized by excellent water – and nutrient – husbandry. Averaging of cropyears and genotypes, we obtained 6984 kgha-1 in 2001 (average cropyear), 5452 kgha-1 in 2002 (dry cropyear), 3120 kgha-1 in 2003 (extremely dry cropyear) and 8400 kgha-1 in 2004 (optimum cropyear), respectively. The yield differences between the minimum and maximum yields were 885 kgha-1 in early varieties, 812 kgha-1 in middle and 337 kgha-1 in late maturity varieties, respectively. The varieties characterized by high yield potential and the varieties characterized by good yield stability were different, so in variety selection we have to take both genetic traits into consideration. There were positive, significant correlations among the yields of winter wheat varieties (early, middle, late), the temperature of spring months. (March-April), and the rainfall of spring months (March-April) (R2=0,703**-0,768** and R2=0,681**-0,749**, respectively). We found a high negative correlation between the temperature of early summer months (May-June) and the yields of wheat varieties (R2= -0,856**- -0,918**).
    According to the results of our experiment, it is very important to harmonize yield potential and yield stability in the variety selection of winter wheat.

  • The imact of crop rotation and fertilisation on the SPAD values of winter wheat on chernozem soil in a long-term experiment
    123-126
    Views:
    126

    We have carried out our outdoor field experiments at the Látókép Experimental Farm of the CAS of the University of Debrecen in the cropyear of 2012/2013 on chernozem soil in a long-term experiment. We have studied the effects of two different preceding crops (sweet corn, sunflower) on the development of the SPAD values of wheat varieties of different genotypes in the cases of control, N60+PK and N120+PK fertilizer treatments. According to our research results, we have concluded that the preceding crop, the fertilizer application and the variety selection influenced the SPAD values. According to our data, we have measured higher SPAD values after sweet corn preceding crop, the standard deviations were in a smaller range in the case of the studied varieties. After sunflower preceding crop, smaller averages were experienced with wider standard deviation range. In the case of favourable preceding crop, the differences between the varieties are more pronounced than in the case of unfavourable preceding crop. The maximal SPAD values were measured in milky ripening in the case of N120+PK fertilizer treatment.

  • Correlation between sowing time of maize hybrids, yield and seed moisture content at harvest on chernozem soil
    32-41
    Views:
    104

    In this paper, we analysed the results of maize sowing time experiments conducted by the Department of Crop Sciences and Applied Ecology of the University of Debrecen Agricultural Sciences Centre, during the period from 1997-1999. We made the experiments at the experimental garden of DE ATC, on a chernozem soil with lime deposits.
    In 1997, we examined five hybrids, in 1998 six hybrids, and in 1999 three hybrids, with three sowing times. Sowing times were early (10. Apr. and 08. Apr.), optimal (25. Apr. and 28. Apr.) and late (15. May and 17. May). 
    We examined the following standards: yield, seed moisture content at harvest, thousand kernel mass, duration of flowering, emergence time and profitability.
    In 1977, the emergence times, in order of sowing, were: 24, 12 and 9 days. Yields of the sowing times were the following, in mean, for the five hybrids: in the early sowing time (10. Apr.) 11,81 t/ha, in the optimal sowing time (25. Apr.) 11,67 t/ha, and in the late sowing time (15. May) 12,9 t/ha. The seed moisture content of the five hybrids at harvest was 8% less in early sowing time, than in the late sowing time. The thousand kernel mass was the biggest in late sowing time, but we could not prove any significant connection attributable to the effect of sowing time. We examined
    profitability, too. Of the five hybrids, four attained the greatest profit with the early sowing time in 1997.
    In 1998, the emergence times, in the order of sowing, were: 21, 10 and 11 days. Yields of the sowing times were the following, in mean, for the six hybrids: 08. Apr. 10,34 t/ha, 25. Apr. 11,02 t/ha, 15. May 11,52 t/ha. There were no significant differences between yields in 1998. The seed moisture content of the six hybrids at harvest was 7% less for the early sowing time, than for the late sowing time. In 1998, the profits were greatest for the
    early and traditional sowing times.
    In 1999, the numbers of days from sowing to emergence were 18, 9 and 9 days, in the order of sowing times. Yields of the sowing times were the following, in mean, for the three hybrids: 13,25  t/ha, 12,51 t/ha and 12,34 t/ha, in the order of sowing times. The seed moisture content of maizes at harvest was 6% less with an early sowing time in the mean of all hybrids. In 1999, hybrid maizes gave big profits with early sowing times.
    Summing up the results of the three years, we can conclude that we get a significant yield increase and reduced seed moisture content at harvest if we apply the early sowing time, which can considerably increase the efficiency of maize cultivation. 

  • The effect of sowing date and plant density on the yield of maize (Zea mays L.) under different weather conditions
    205-208
    Views:
    272

    Maize has high productivity and produces huge vegetative and generative phytomass, but this crop is very sensitive to agroecological (mainly to climatic, partly to pedological conditions) and agrotechnical circumstances. In Hungary, maize is grown on 1.1–1.2 million hectares, the national average yields vary between 4–7 t ha-1 depending on the year and the intensity of production technology. The longterm experiment was set up in 2015–2016 on chernozem soil in the Hajdúság (eastern Hungary). The maize research was set up on chernozem soil at the Látókép MÉK (Faculty of Agricultural and Food Sciences and Environmental Management) research area of the University of Debrecen. We examined the following commonly used hybrids of Hungary: SY ARIOSO (FAO 300), P9074 (FAO 310), P9486 (FAO 360), SY Octavius (FAO 400), GK Kenéz (FAO 410), DKC 4943 (FAO 410). The experiment was set up in three different plant densities. These were 60, 76, 90 thousand plant ha-1. The experiment was set up with three different sowing dates, early, average and late sowing. The yield was measured using a special plot harvester (Sampo Rosenlew 2010), measuring the weight of the harvested plot and also taking a sample from it. As a next step, we calculated the yield (t ha-1) of each plot at 14% of moisture content to compare them to each other. We evaluated the obtained data using Microsoft Excel 2015.

  • Comparative study of a winter wheat variety and hybrid sown after different pre-crops on chernozem soil
    63-69
    Views:
    205

    Wheat production is a determining branch within Hungarian crop production (produced on nearly one million hectares). Weather anomalies caused by climatic change confirmed the importance of the biological background (variety, hybrid) in wheat production. The adapting ability and reaction of different wheat genotypes towards nutrient supply were studied in a long-term field experiment on chernozem soil type in the case of different pre-crops (sunflower and maize). According to the experimental results of the vegetation of 2017/2018, the yield of the variety Ingenio sown after the sunflower as previous crop ranged between 4168 and 8734 kg ha-1, while in the case of maize as previous crop, this value ranged between 2084 and 7782kg ha-1, depending on the applied nutrient supply level. The studied genotypes produced rather significant yield surplus as a response to the application of mineral fertilization (4.6–5.1 t ha-1 after sunflower and 5.7–6.3 t ha-1 after maize). Optimal mineral fertilizer dosage was determined by both the genotype and the pre-crop. N-optimum values of wheat genotypes was determined using regression analysis. In the case of the variety Ingenio sown after sunflower, the optimum range was N144-150+PK, while after maize, it was
    N123-150+PK, respectively. For the hybrid Hyland, these optimum ranges were N114-120+PK, just as N150-153+PK, resp. The application of optimal mineral fertilizer dosages improved water utilization of the studied wheat genotypes to a significant extent. WUE values of the control, unfertilized treatments ranged between 4.1–8.3 kg mm-1, while in optimal fertilizer treatment, it ranged between 15.5 and 17.4 kg mm-1.

  • Studies of plant density increase – on maize hybrids of various genotypes on chernozem soil
    87-92
    Views:
    137

    The yield and crop safety of maize are influenced by numerous ecological, biological and agrotechnical factors. It is of special importance to study one of the agrotechnical elements, the plant density of maize hybrids, which is influenced by the growing area conditions and the selected hybrid.

    We have investigated the effects of three different plant numbers (50 thousand plants ha-1, 70 thousand plants ha-1 and 90 thousand plants ha-1) on the yield of 12 maize hybrids of different genotypes in Hajdúság, on calcareous chernozem soil, in the Látókép Research Farm of the University of Debrecen, Centre for Agricultural Sciences, in 2013. The experiment was set in four replications, besides commonly applied agrotechnical actions. In the experiment, 1 hybrid of very early (Sarolta), 9 of early (P 9578, DKC 4014, DKC 4025, P 9175, NK Lucius, Reseda, P 37N01, DKC 4490, P 9494) and 2 of medium (Kenéz, SY Afinity) maturation were used.

    With the increase of the plant number, the number of individuals per unit area increases. According to our experimental results, we have concluded that with the increase of the plant number, the yield increased in the average of the hybrids. In the average of the hybrids, in the case of 50 thousand plants ha-1, the yield was 13 130 kg ha-1, in the case of 70 thousand plants ha-1, it was 13 824 kg ha-1, while in the case of 90 thousand plants ha-1, the yield became 13 877 kg ha-1.

    In addition to plant density increase, it is necessary to determine the optimal plant number that is the most favourable for the certain hybrid under the given conditions. To fulfil this aim, we have determined the optimal plant number corresponding to the maximum yield of the given hybrid, within the given plant number range. The optimal and applied plant numbers differ, since the optimal one could only be applied under ideal conditions. Since the agrotechnical actions cannot always be carried out in appropriate quality and one has to adapt to the weather conditions, thus we have determined a plant number range in the case of each hybrid. The hybrids were classified into categories of producible in narrow and broad plant number range.

  • Hybrid-specific nutrient and water use of maize on chernozem soil
    51-54
    Views:
    110

    The field research was set up on chernozem soil at the Látókép AGTC KIT research area of the University of Debrecen. The study focused on yield, water utilization, nutrient reaction and the amount of yield per kg fertilizer of corn hybrid NX 47279 in 2011 and 2012. Based on the yield results it can be concluded that the largest yield in 2011 was 15 963 kg ha-1 at level N120+PK, while in 2012, the maximum yield amounted to 14 972 kg ha-1 at level N90+PK. Surplus yield per kg fertilizer proved that in 2011 level N30+PK resulted in the highest surplus yield (42.3 kg kg-1) compared to the control treatment. In 2012, yield growth was 18.0 kg kg-1 compared to the control treatment. We measured at level N60+PK 17,5 kg kg-1 compared to at level N30+PK, at the N90+PK 17,7 kg kg-1 compared to at level N60+PK. level N30+PK kg kg-1, 17.5 kg kg-1 at level N60+PK and 17.7 kg kg-1 at level N90+PK compared to the control treatment.

    Results of the regression analysis showed that the amount of nitrogen fertilizer was 117 kg ha-1 in 2011 and 111 kg ha-1 in 2012 in order to reach maximum yield. Doses of fertilizers above the amounts previously mentioned resulted in yield decrease. Our results indicated that in the drought year of 2012 the hybrid used available water more efficiently than in 2011. The hybrid produced 59 kg ha-1 yield in 2012 and 51.9 kg ha-1 in 2011 at an optimum nutrition level.

  • The effect of sowing date and plant density in three maize hybrids germination and growth dynamics
    105-110
    Views:
    159

    The maize research was set up on chernozem soil at Látókép research area of the Centre for Agricultural Sciences University of Debrecen. We examined the following hybrids SY ARIOSO (FAO 300), P9486 (FAO360), DKC 4943 (FAO 410). The experience was set u pin three different plant density. These were 60, 76 and 90 thousand plant ha-1. The experience was set up in three different sawing date, early, average and late. The germination and growing dynamic measurements was measured in three hybrid, three sawing date, three plant density in four replication. well observed at the first sawing date (April 5) the soil was too cold therefore the germination was begins very slowly to be slowly increased. The second sowing time was the average (April 21) there the germination launch as soon as possible more rapid growth in the amount of heat. We experienced the most intense germination was in the case of the emergence late sowing date (May 5). Looking at the growth dynamics for the first two sawing date was side by side and almost equal to the maximum value. This is explained by the adaptive capacity of the maize to compensate for the sawing difference. For the third time, despite the delayed sawing the maize began to grow more dynamically than in previous sawing times due to the results of the initial good conditions it growth faster than halted in the second half of the season because of the high temperatures and lack of precipitation.

  • Evaluation of long term experiments from a new aspect
    55-60
    Views:
    112

    During our work, we developed a new, simple method to show the effects of fertilization on yield, which can both be applied over the long term as well as in series of independent experiments.
    During the testing of this method, at the experimental farm of the Debrecen University Center for Agricultural Sciences at Látókép on a chernozem soil with lime deposits, we examined the fertilizer reaction of maize hybrids between 1989 and 1994. The treatments were: winter tillage, plant density of 70-80 thousand, unfertilized, N 120, N 240 kg/ha fertilized treatments, long term experiments using Dekalb 524 and Volga SC hybrids in long term experiments.
    Four parameters are shown in the model. In the examined period TRmax represents the greatest yield in the fertilized treatments, NT the yield in unfertilized treatment, k the „efficiency of fertilizer” to NT and b the depression-coefficient, where the expected value is zero. The expected grain yield of the fertilized treatments (Y), in the function of the unfertilized grain yield (x) is the following:

    The parameters were determined using the Monte Carlo method, in the optimizing process the sum of deviation square was minimized. The correct conformation of the functions was determined by the greatness of the R-value and the standard error. We found that during six years of testing, the tendency of fertilization efficiency was similar in the case of both hybrids. There was an unfavorable weather interval and, in these years, the yields were low, fertilization did not have an effect and moreover, in extremely bad conditions resulted in an obvious yield decrease. With the  improvement of conditions, which in the case of our country means an increase in precipitation, the efficiency of fertilization increases and reaches its peak at 13-14 t/ha. At this point, the yield increasing effect of fertilization is 4-4,5 t/ha. If the yield of the unfertilized treatments increases from 8-9 t/ha, then the efficiency of the applied fertilizer decreases.
    Most likely, the k and b parameters depend on the soil of the experimental location (nutrient and water management) and on the amount of  pplied fertilizer and the characteristics of the  hybrid. With the increase of fertilizer dosage the k-parameter also increases. The greater value though does not obviously mean a more favorable situation. It is true that in medium and good years this means great fertilizer efficiency, but in low or extreme precipitation conditions it also means greater risk. With the increase of the k-parameter, the yield deviation also increases which, from a cultivation point of view, is quite unfavorable. If the value of the b-parameter is other than, zero then the effect is clearly unfavorable, because with the increase of this value, the yield decrease is also greater. The fertilizer reaction of the two examined hybrids can be well characterized by these two hybrids.
    Examining the six years, our created model estimated the effect of fertilization on the yield accurately and with a high degree of safety. Both in highly unfavorable and extremely good years, it gave an exact estimate. In our opinion, it can be used well to evaluate the effects of fertilization on yield in the future.

  • Studies of the effects of N fertilizers and Microbion UNC biofertilizer on microelement content of horseradish (Armoracia macrocarpa)
    41-45
    Views:
    115

    A field experiment on calcareous chernozem soil was performed to study the effects of different N and bacterial fertilizers on the nutrient content of horseradish (Armoracia macrocarpa). In the experiment the trials were arranged in a randomized block design with three replications, applying three levels of NH4NO3 and different N fertilizers, namely ammonium-nitrate, urea and calcium-nitrate, with or without application of Microbion UNC biofertilizer.
    In the present paper the changes and distribution of manganese, zinc and copper contents of the horseradish plant are summarized by the
    effect of different treatments.
    The Mn content of leaves were higher in all cases than those of roots, but Zn mainly accumulated in the roots. The distribution of copper within the horseradish plant was more equalized than that of Zn and Mn. Different N fertilizers and increasing doses of ammonium-nitrate had effects mainly on the microelement contents of leaves. The highest Mn contents of plant were measured in treatments of Ca(NO3)2 and Ca(NO3)2+Microbion. The lowest ammonium nitrate dose (N1) decreased the Mn content of leaves compared to control, but further doses
    (N2, N3) did not alter these values any longer. Microbion UNC biofertilizer did not have any effect on the Mn content of roots, but we measured higher Mn in leaves in some combined treatments. Ca(NO3)2 increased the zinc content in leaves and roots in a noticable manner. With the increasing of NH4NO3 doses, the Zn content of leaves and roots augmented significantly. Neither N fertilizers (or the increasing doses of NH4NO3) nor the biofertilizer application influenced the Cu content of horseradish plant. 
    N fertilizers had higher effects on the microelement content of horseradish, the biofertilizer’s effect was smaller and was not the same in every treatment.

  • Analysis of maize and sunflower plants treated by molybdenum in rhizobox experiment
    11-14
    Views:
    182

    In this study, maize (Zea mays L. cv. Norma SC) and sunflower (Helianthus annuus L. cv Arena PR) seedlings treated by molybdenum (Mo) that were cultivated in special plant growth boxes, known as rhizoboxes. During our research we tried to examine whether increasing molybdenum (Mo) concentration effects on the dry mass and absorption of some elements (molybdenum, iron, sulphur) of shoots and roots of experimental plants.

    In this experiment calcareous chernozem soil was used and Mo was supplemented into the soil as ammonium molybdate [(NH4)6Mo7O24.4H2O] in four different concentrations as follow: 0 (control), 30, 90 and 270 mg kg-1.

    In this study we found that molybdenum in small amount (30 mg kg-1) affected positively on growth of maize and sunflower seedlings, however, further increase of Mo content reduced the dry weights of shoots and roots. In case of maize the highest Mo treatment (270 mg kg-1) and in case of sunflower 90 mg kg-1 treatment caused a significant reduction in plant growth.

    In addition, we observed that molybdenum levels in seedling were significantly elevated with increasing the concentration of molybdenum treatment in comparison with control but the applied molybdenum treatments did not affect iron and sulphur concentration in all cases significantly.

  • Complex evaluation of agrotechnical factors in rape seed
    59-63
    Views:
    95

    A polifactorial field trial with rape was carried out in the crop-years of 2007/2008 and 2008/2009 at the Látókép Research Centre of University of Debrecen, 15 km away from Debrecen. The soil type of the research area was a calcaric chernozem, with a levelled and homogeneous surface. Our investigations on the dynamics of lodging proved that rape can easily be lodged under unfavourable weather conditions, which results in a significant crop failure: In crop-year 2009 yields were 1.0-1.5 t ha-1 higher than in 2008, when the weather conditions were more unfavourable. In both crop-years the influence of sowing time on the crop yield of rape was examined in three soil cultivation systems, with ploughing, loosening or disking. Different sowing time influenced the yield of rape in both crop-years significantly. In the crop-year of 2007/2008 – due to mild winter – we got the highest yield in the first sowing time (at the end of August) with loosening (3930 kg ha-1) and disking (3727 kg ha-1), while in case of ploughing we experienced the highest yield (3770 kg ha-1) in the second sowing time. There were no significant differences between the first and second sowing time (the end of August and the beginning of September), and in the third sowing time (end of September) also a moderate crop failure (-6.7%) cold be obtained, due to the favourable weather in winter and the water supply of the crop-year 2007/2008. In 2008/2009 all the three cultivation systems showed the best yield-results in the second sowing time (ploughing: 4886 kg ha-1, loosening: 5186 kg ha-1, disking: 5090 kg ha-1), and the first sowing time hardly differed from this (-4.1%), while the late September sowing time resulted in a significant crop failure of -11.1%.

  • Changes in the Macro-, Mezo-, and Microelement Contents of Maize Hybrids in Relation to the Level of Nutrient Supply
    126-130
    Views:
    63

    n my research, I measured the effect of NPK fertilisation on the macro- meso- and microelements content of maize hybrids in 2001. The experiment was set in the demonstration garden of the Department of Crop Production and Applied Ecology in the Agricultural Centre, at the University in Debrecen. The soil of the experiment is calcerous chernozem soil. Five fertilisation steps were applied. Besides the control the smallest rate was 40 kg N; 25 kg P2O5; 30 kg K2O of active ingredients. The largest rate was five times more than the smallest one: 200 kg N; 125 kg P2O5; 150 kg K2O, which is equal to 475 kg mixed active ingredients. The NPK treatment significantly influenced the macrolement content in several cases. The N content was the lowest in the control treatment. Compared to this the fertiliser treatments significantly increased the N content of hybrids. However the highest amounts of potassium and phosphorus could be measured in the control and the lowest amounts could be measured at the N 200+PK kg/ha treatment.
    The Ca content of hybrids was the highest in the N 120+PK kg/ha treatment, while their Mg and Zn content was the highest in the control treatment. The lowest amounts were weighed in the N 200+PK kg/ha treatments, that in several cases resulted in statistically proved decreasement compared to the control or the lower fertilizer doses. Considering the two mesoelements and Zn the most favourable results were obtained in the case of the Norma SC and DK 366 SC hybrids.
    Summing up what has been said moderate amounts of fertiliser doses (N 40-120+PK kg/ha) had a favourable influence on the micro- and macroelement content of hybrids.