Researches on the quick method of sugar productivity evaluation

Dorin Popa and Gheorghe Sarca
University of Oradea, Faculty for Environmental Protection

ABSTRACT

In a sugar factory it is necessary to be able to calculate very quickly the sugar productivity possible to obtain by processing the beet having a certain technological quality. That is the reason why, in the following lines, it is presented a very quick method used by the Institute of Alimentary Chemistry, the laboratory for sugar research and engineering, for such kind of quick calculations, but with a high theoretical and practical precision.

Keywords: sugar productivity, quick method, technological parameters

INTRODUCTION

Securing the technological process efficiency is mainly done through the following:

- Decreasing to the minimum level the sugar amount re-circulated from the $1^{\text {st }}$ step of crystallization to the $2^{\text {nd }}$ one;
- Decreasing to the minimum level the sugar amount re-circulated from the $2^{\text {nd }}$ step of crystallization to the $3^{\text {rd }}$ one;
- Permanent preoccupation to avoid the drawing in the molasses of those small crystals that can pas through the loops of the centrifugal sieves.

MATERIALS AND METHODS

Table 1 is completed after the calculations.
Table 1.1 The quick calculation of sugar productivity

For calculating this total the following method is recommended:
C1 has the value of 100.00 because the total is calculated for 100 kg beet noodles;
P 1 is determined with the laboratory analysis. In the given example it was admitted the value of 16.00%; $\mathrm{Z} 1=\mathrm{P} 1$;
Z2 - the value recognized by the extractor's supplier is accepted. In the given example the value of 0.20% was admitted, specific to the extractor type DDS;
SU2 is considered 30% from Z2, because, by fermentation or enzymatic processes, the sugar is not wholly changed into volatile substances and water, but it is particularly changed in lactic acid. The recommendation is given by The Laboratory for sugar research and engineering at the Institute of Alimentary Chemistry, Bucharest;
C3 is considered 80% of C 1 ;
P 4 is determined by laboratory analyses. In the given example the value of 0.9% is accepted;
B4 is determined by laboratory analyses. In the given example the value of 18% is accepted;
C4 is calculated from Muck's diagram, according to the known methodology;
$\mathrm{Z} 4=(\mathrm{C} 4+\mathrm{P} 4) / 100$;
$\mathrm{C} 5=\mathrm{C} 3-\mathrm{C} 4$;
$\mathrm{Z} 8=\mathrm{Z} 1-\mathrm{Z} 2-\mathrm{Z} 3$
P8 is determined by laboratory analyses. In the given example the value of 12.50% is accepted; B8 is determined by laboratory analyses. In the given example the value of 14.70° Brix is accepted;
$\mathrm{Q} 8=(\mathrm{P} 8 / \mathrm{B} 8)-100$;
$\mathrm{Z} 8=((\mathrm{Z} 1-\mathrm{Z} 2-\mathrm{Z} 4) / \mathrm{P} 8)-100$;
SU8 = (Za/QB) - 100;
$\mathrm{C} 8=(\mathrm{Z} 8 / \mathrm{P} 8)-100$;
$\mathrm{C} 6=\mathrm{C} 8+\mathrm{C} 3-\mathrm{C} 1$;
$\mathrm{C} 7=\mathrm{C} 6-\mathrm{C} 5$;
P9 is determined by laboratory analyses. In the given example the value of 0.70% is accepted;
C9 is accepted as being equal with $10.00 \mathrm{~kg} / 100 \mathrm{~kg}$ beet;
$\mathrm{Z} 9=(\mathrm{C} 9 \times \mathrm{P} 9) / 100$;
$\mathrm{Z} 10=0.05$;
B11 is determined by laboratory analyses. In the given example the value of $13.70^{\circ} \mathrm{Brix}$ is accepted;
P11 is determined by laboratory analyses. In the given example the value of 12.35% is accepted;
Z11 = Z8 - Z9 - Z10;
SU11 = SU8 - SU12;
Q11 = (Z11/SU11) x 100;
C11 = (Z11/P11) x 100 ;
B 12 is determined by laboratory analyses. In the given example the value of $65.00^{\circ} \mathrm{Brix}$ is accepted;
P12 is determined by laboratory analyses. In the given example the value of 58.50% is accepted;
$\mathrm{Q} 12=(\mathrm{P} 12 / \mathrm{B} 12)-100$;
SU12 = SU11;
Z 3 is accepted with the value of $0.3 \mathrm{~kg} / 100 \mathrm{~kg}$ beet;
$\mathrm{Z} 14=\mathrm{Z} 12-\mathrm{Z} 13$;
B15 is determined by laboratory analyses. In the given example the value of $82.00^{\circ} \mathrm{Brix}$ is accepted;
P15 is determined by laboratory analyses. In the given example the value of 50.85% is accepted;
$\mathrm{Q} 15=(\mathrm{P} 15 / \mathrm{B} 15)-100$;
$\mathrm{Z} 15=(\mathrm{SU} 11-\mathrm{Z} 11) \times(\mathrm{Q} 15 /(100-\mathrm{Q} 15))$;
C15 $=(\mathrm{Z} 15 / \mathrm{P} 15) \times 100$;
SU15 = (Z15/P15) - 100;
Q16 = Q15
$\mathrm{P} 16=50$;
B16 $=($ P16/Q16 $) \times 100$;
SU16 = SU15;
C16 = (Z16/P16) - 100;
$\mathrm{Z} 17=\mathrm{Z} 14-\mathrm{Z} 15$;
B17 is determined by laboratory analyses. In the given example the value of 99.50% is accepted;

P17 is determined by laboratory analyses. In the given example the value of 99.35% is accepted;
Q17 $=(\mathrm{P} 17 / \mathrm{B} 17) \times 100$;
SU17 $=($ Z17-Q17 $) \times 100$;
C17 = (Z17/p17) x 100;
SU18 = SU17;
Q18 = (Z18/SU18) - 100;
B18 is determined by laboratory analyses. In the given example the value of 99.95% is accepted; P18 is determined by laboratory analyses. In the given example the value of 99.80% is accepted;
C18 $=(\mathrm{Z} 18 / \mathrm{P} 18)-100$;
$\mathrm{C} 19=\mathrm{C} 17-\mathrm{C} 18$.

RESULTS

CALCULATION FORMULAS OF SOME TECHNOLOGICAL PARAMETERS

Calculation of the water quantity for diluting the thick mass final product

The following relation is used in order to calculate the water quantity necessary for the diluting of the thick mass final product before the additional crystallization through cooling:
11 water $/ 100 \mathrm{~kg}$ thick mass final product], (9.38)
in which:
B is the content of dry substance in the thick mass final product while discharging it from the vacuum apparatus, in ${ }^{\circ}$ Brix:
NZ1 - content of non-sugar in the thick mass final product while discharging it from the vacuum apparatus, in $\mathrm{kg} / 100 \mathrm{~kg}$ thick mass;
A1 - content of water in the thick mass final product while discharging it from the vacuum apparatus, in $\mathrm{kg} / 100 \mathrm{~kg}$ thick mass;
NZ2 - content of non-sugar expected to be produced by diluting the thick mass final product, in $\mathrm{kg} / 100 \mathrm{~kg}$ thick mass;
A2 - content of water in the thick mass final product after dilution, in $\mathrm{kg} / 100 \mathrm{~kg}$ thick mass

Relations between the values of different indicators determined in laboratory analyses

The following indicators are:
O - purity;
Z - content of saccharose polar-metrical determined from a product, expressed in \%;
S - content of apparent dry substance of a product refractory-metrical determined, expressed in ${ }^{\circ}$ Brix;
A - content of water of a product, expressed in $\mathrm{kg} / 100 \mathrm{~kg}$ product;
NZ - content of non-sugar of a product, representing the sum of the content of organic substances and mineral substances in a product, expressed in $\mathrm{kg} / 100 \mathrm{~kg}$ product;
Z/A - ratio non-sugar / water or solubility of sugar in water;
C - content of conductor-metric ash of a product, expressed in \%;
SO - content of organic substances in a product, expressed in \%;
RO - organic ratio that represents the ratio between the content of organic substances and conductor-metric ash in a product;
CS - saline coefficient, expressed in the ratio between the content of sugar and conductor-metric ash in a product
There are the following calculation relations between these indicators:
$\mathrm{A}=100-\mathrm{B}[\mathrm{kg} / 100 \mathrm{~kg}$ product $] ;$
$\mathrm{Q}=\frac{Z}{B} * 100=\frac{S / A^{*}(100-B)}{B}=\frac{100 * S / A}{S / A+N Z / A}[\%]$

$$
\begin{align*}
& \mathrm{Z}=\frac{Q * B}{100}=\mathrm{Z} / \mathrm{A} *(100-\mathrm{B})[\%] \tag{9.41}\\
& \mathrm{B}=\frac{Z}{Q} * 100=\frac{Z / A *(100-B)}{Q} * 100[\%] \tag{9.42}\\
& \mathrm{NZ}=\mathrm{B}-\mathrm{Z}=\frac{Z}{Q} * 100-\frac{Q * B}{100}[\%] \tag{9.43}\\
& \mathrm{Z} / \mathrm{A}=\frac{Z}{100-B}=\frac{Q * B}{100 *(100-B)}[\%] \tag{9.44}\\
& \mathrm{RO}=\frac{B-Z}{C}-1=\frac{Z / Q-Z}{C}-1=\frac{Z}{C} *\left(\frac{1}{Q}-1\right)[\%] \tag{9.45}
\end{align*}
$$

But Z / C is the saline coefficient, noted CS. It results:

$$
\mathrm{RO}=\mathrm{CS} *\left(\frac{1-Q}{Q}\right)-1,
$$

From where results:

$$
\mathrm{CS}=(1-\mathrm{RO}) * \frac{Q}{1-Q} .
$$

REFERENCES

1. Banu C., 1992 - "Progrese tehnice, tehnologice si stiină ifice în industria alimentară", Ed. Tehnică, Bucuresti.
2. Beceanu Dumitru, Chira Adrian, 2003 - "Tehnologia produselor agricole", Ed. Economică, Bucuresti.
3. Sarca Gheorghe, 2009 - "Tehnologia zaharului", Ed. Univ. din Oradea
4. International Sugar Journal, 2010 May.
5. Popescu V., Stroia A., 1998 - " Tehnologii modern de industrializarea sfeclei de zahăr", Ed. Ceres, Bucuresti.
