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SUMMARY 

 
The wiser usage of irrigation water is inevitable in the future. Irrigation has very high input cost; therefore, farmers must carry out 

irrigation with care. Also, the effect of irrigation on crops has a big role in decision making. Modeling provides a possibility to evaluate this 

effect. AquaCrop, as a crop production simulation model has great potential in this field. The accuracy of tomato biomass yield prediction of 

the model was tested in this research. For collecting the necessary data, a field experiment was conducted at Szarvas on processing tomato 

with different water supplies, such as 100% (I100), 75% (I75), 50% (I50) of potential evapotranspiration and a control with basic water 

supply (C). The relation of the simulation and actual biomass yields was evaluated during the season. Very good correlation was found 

between the modelled and the actually harvested data. The data for the control and I100 treatments showed higher correlation than the I75 

and I50. The relationship for all of the data was moderately strong. Miscalculations occur mostly when the dry biomass yield reaches  

7 t ha-1. The accuracy of the model was evaluated with the use of mean absolute error (MAE) and root mean squared error (RMSE) values. 

The least error was found in the C treatment, which means 0.34 MAE and 0.45 t ha-1 RMSE. The simulation resulted in higher errors in the 

I75 and I50 treatments.  
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INTRODUCTION 

 
An increasing amount of experience justify that 

successful and sustainable plant cultivation cannot be 
performed without planned irrigation. On many areas 
of the world, irrigation water is a limiting factor. In 
Hungary, where the irrigation from surface water is 
solved, then it is well supplied in general. Although, 
farmers must take into account the high energy cost 
that is essential for the water transportation and 
pumping. Learning the exact benefits of irrigation may 
contribute to use irrigation water and energy wisely. 
This knowledge can be aquired via modeling as well 
when the model is able to reveal the effect of 
irrigation on crop production. Besides, a good model 
can be a part of a farmer’s decision support system, 
even if there are simpler methods to calculate 
irrigation water needs for processing tomato (Helyes 
and Varga, 1994). Moreover, deficit irrigation is a 
great concept to save water (Nemeskéri et al., 2015, 
2018) or positively influence yield quality through 
raising soluble solids content (Patané and Cosentino, 
2010). Processing tomato’s respons to different level 
of water supply is well researched (Bőcs et al., 2011; 
Helyes et al., 2012, 2014; Pék et al., 2015) even if it is 
combined with mycorrhiza (Bakr et al., 2017; Le et 
al., 2016) or plant growth promoting rhizobacteria (Le 
et al., 2018). 

We can follow tomato production looking at the 
data of Food and Agriculture Organization of United 
Nations (FAO). It shows, that the yield harvested in 
the world in the last two decades is increasing. In the 
European Union, the harvest area is in a decreasing 
tendency and the yield quantity was in the 15–20 

million tonnes range between 1996 and 2016 (Food 
and Agriculture Organization, 2018). Reliable 
statistics for processing tomato only is accessable via 
World Processing Tomato Council (WPTC) data. 
According to the council, the production dropped from 
38.7 Mt to 31.9 Mt in the last four years in the 
northern hemisphere, and from 11.2 Mt to 9.3 Mt in 
the EU. Hungarian production was above 100,000 
tonnes in these years and reached 120,000 tonnes in 
the 2018 season (World Processing Tomato Council, 
2018). 

AquaCrop, as a crop production simulation model, 
can describe the interactions between plant and soil 
(Raes, 2017; Steduto et al., 2012). A good model 
should be fast, simple as much as possible, but also 
fairly accurate and AquaCrop balance these 
expectations well (García-Vila and Fereres, 2012). 
Besides, training handbooks are also available for 
users (Raes, 2017; Raes and van Gaelen, 2017) The 
input data that are needed for an AquaCrop simulation 
is more or less easily collectible. However, to aquire a 
satisfying simulation at least the weather conditions, 
crop information (planting date, cultivar), field 
management (soil fertility, mulches, weed 
management), irrigation management (irrigation type, 
depths, dates), soil profile and groundwater 
information must be known (Raes, 2017). Very 
important to add these variables according to reality to 
get satisfying results in the end of the simulation. 
Testing AquaCrop to model crop parameters under 
diverse environments had been conducted in several 
plants, such as maize (Hsiao et al., 2009; Katerji et al., 
2013), sunflower (Todorovic et al., 2009), wheat 
(Toumi et al., 2016) or even potato (Linker et al., 
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2016; Montoya et al., 2016) and tomato (Katerji et al., 
2013; Takács, et al., 2018; Takács et al., 2017). Also 
an interesting ability of the model, that it can estimate 
the stomatal closure percentage affected by soil water 
stress, which can be a good criteria for monitoring the 
state of plants (Takács et al., 2018). Stresses do not 
occur only under hot weather conditions, but also can 
be caused by cold temperature, which can be also 
simulated via AquaCrop modeling (Vanuytrecht et al., 
2014).  
 
MATERIAL AND METHODS 

 
A field experiment was conducted at Szarvas, 

south-east Hungary on the experimental farm of Szent 
István University. The size of the experimental area 
was ~0,5 ha and it was divided into four, almost equal 
plots for the different water level treatments. Tomato 
seedlings (UG812 J F1 hybrid) were transplanted on 
8th May 2018 in single row style, where distance 
between rows was 140 cm and distance between 
plants was 20 cm. The season ended on 14th August. 
We used AcuaCrop v6.0 (Steduto et al., 2012) to 
determine the water demand of plants and to run the 
full season models for the four different water levels. 
The software calculates evapotranspiration according 
to the FAO Penman-Monteith method (Allen et al., 
1998) that considers the development state of the 
plants as well as meteorological data. Three out of 
four plots were irrigated regularly with different 
proportions of the potential evapotranspiration (ET) 
computed with the software. One plot received 100% 
of ET (I100). There were two deficit irrigated plots. 
These were irrigated with 75% (I75) and 50% (I50) of 
ET. The control plot (C) was not regularly irrigated, 
except the plant recovery period after transplantation 
and the events of fertilization. This was necessary to 
reach a starting state with plants in good condition and 
to wash down fertilizer granulates off leaves, to avoid 
scorching. Sprinkler irrigation was performed with a 
precision centre pivot system equipped with individual 
sprinkler control variable rate irrigation (VRI iS), two 
times per week. The shapes of these plots and 
different irrigation rates were planned with Valley 
VRI 8.55 software in the beginning of the season. So, 
the whole experiment was placed under one sprinkler 
irrigation machine. The uniformity of the machine and 
the transition between zones had been evaluated 
(Takács et al., 2018). Irrigation was cut-off 25 days 
before harvest. The experiment was placed on clay-
loam soil. Meteorological data (such as temperature, 
relative humidity, wind speed, precipitation) were 
recorded by a meteorological station installed nearby 
the field. We collected biomass samples six times 
during the season. Firstly, the seedlings were 
measured at the time of transplantation on the first 
day. Further biomass samples were collected on the 
28th, 44th, 64th and 77th day after transplanting. The 
final sample was collected at the time of harvest on 
98th day after transplanting. We cut out four plants 
randomly from every treatment at every occasion. 

These plants were taken to the laboratory of Szent 
István Egyetem, Tessedik campus and were put into 
the drying cabinet to 105 °C for one day. After the 3rd 
sampling date we put the plants and fruits for two days 
into the drying cabinet, instead of one day for reching 
constant weight. At harvest we measured 10 plants per 
treatment. Statistical tests were performed in R x64 
3.5.1 (R Core Team, 2018). Pearson’s correlation tests 
were used to see connection between modelled and the 
actual dry biomass production. Mean absolute error 
(MAE) and root mean squared error (RMSE) were 
used for the model evaluation. 

The climate file was created from local 
meteorological data last from 1st January 2017 to 14th 
August 2018. The in-bulit Tomato crop file was used 
with several modifications of calendar dates and crop 
canopy cover. For the soil profile, samples were 
analyzed taken from different depths of the 
experimental field. Non-limited soil fertility and good 
weed management were set for the modelling. 
Groundwater table were set in 2 m depth. 

 
RESULTS AND DISCUSSION 

 
Meteorology and irrigation 

The length of the season was 98 days. The mean 
temperature of the season was 22.3 °C. The mean 
relative humidity was 69 % and the total precipitation 
was 126.9 mm (Figure 1). Between the date of the last 
irrigation (20th July) and harvest (14th August) 35.8 
mm rainfall was measured. 

We irrigated the control with 43.6 mm water. This 
amount was distributed in the recovery period after 
transplanting and at the times of fertilization events, 
so it received 170.5 mm water in total. The total water 
amounts in the irrigated treatments were 340.4; 296.3 
and 257.8 under the I100, I75 and I50 irrigation 
treatments, respectively (Figure 1). 
 
Biomass yields 

One way to interpret the modelled and the actual 
biomass dry yield data is to visualaze them on line 
charts. The more similar the lines, the better the 
results of the modeling. On Figure 2 the lines of the 
control (A) and the I50 (B) treatment are shown. In the 
case of control, the two lines are going together, 
following the same pattern. When the modelled line 
(dashed) is above the line representing the actual yield 
(solid), then the model is overestimating, and when it 
is below that, then the model is underestimating. 
According to the samples the actual yield reaches the 
maximum by the end of July in the C, while the 
modelled biomass yield is growing continously, so the 
modelled biomass is above the actual with 0.176 t ha-1 
dry biomass yield by the time of harvest, which is a 
little more than 3% difference. Considering the MAE 
and RMSE for the control, this model has the least 
error values, which are 0.34 and 0.45 t ha-1, 
respectively. 
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Figure 1: Meteorology and irrigation data for the 2018 processing tomato season of Szarvas 
 

 

Figure 2: Relation of the actual and modelled biomass yield of the control (A) and the I50 (B) treatment in respect to sampling dates 

 

 
 
In the I50 treatment the modelled line is below the 

measured biomass line almost until the end of the 
season. However, between the last two sampling the 
two lines switch places and by the time of harvest 
overestimation occurs in this treatment as well. The 
extent of overestimation is 1.59 t ha-1, which means 
22.9% difference. The data of the actual biomass 
shows that biomass is reduced for the last sampling. In 
the case of the I50 treatment the accuracy of the model 
was 1.15 t ha-1 MAE and 1.45 t ha-1 RMSE. 

The running of the lines in the I75 treatment is 
very similar to the I50 line chart. The underestimation 
of the model is present until the end of the season, 
where the modelled biomass yield rises above the 
measured yield. The overestimation is less than in the 
I50 treatment, 1.52 t ha-1 biomass yield. The actually 
measured biomass 84.3% of the modelled yield. The 
biomass yield reduction for the last sampling date 
compared to the 5th date is observable in the I75 
treatment too. It is shown on Figure 3. The largest 
errors occurred in the I75 model with 1.51 t ha-1 MAE 
and 2.09 t ha-1 RMSE. The modelled line fits excellent 
with the actual biomass yield line in the I100 
treatment. A little amount of overestimation during the 

season disappears for the harvest date and the model 
underestimates with 0.09 t ha-1 dry biomass yield, 
which means less than 1% difference only. Despite, 
the least errors were found in the C model and not in 
the I100 model. However, the errors in the I100 were 
not too high either, 0.69 t ha-1 MAE and 0.95 t ha-1 
RMSE, respectively. 

The Pearson’s correlation test revealed very strong 
correlation in the cases of the control and the I100 
treatment, on p<0.001 level (Figure 4). Slightly 
weaker correlation appears in the I50 and I75 
treatments, with p-values <0.01 and 0.014, 
respectively. The main reason for that can be the 
bigger midseason inaccuracy, which can be seen on 
Figure 2B and Figure 3A. Besides, the high 
miscalculations in the final yields might take a great 
role as well. 
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Figure 3: Relation of the actual and modelled biomass yield of the I75 (A) and I100 (B) treatments in respect to sampling dates 

 
 

Figure 4: The modelled dry biomass yields in relation to the actual dry biomass yields in the four different treatments. (n=6) 

 

 

When we examined every sample point in one 
correlation test, they showed strong correlation. 
However, Figure 5 points out how scattered the points 
are in the upper region of the scatterplot, around and 

above 7 t ha-1 on the x axis. This means, that the 
higher the yields the higher the miscalculation by the 
model gets. 
 

 

Figure 5: The connection between modelled and actual dry biomass yields. (n=24) 
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CONCLUSION AND DISCUSSION 
 
Meteorology and Irrigation 

Natural water supply did not satisfy the water 
needs of processing tomato in the 2018 season. 
Precise and site-specific meteorological data is  
needed when we want to determine irrigation water 
demand with AquaCrop computing potential 
evapotranspiration. The steps between the different 
water doses are 87, 39 and 44 mm, so it provides good 
resolution to examine the effect of water to the dry 
biomass yields. 

 
Biomass yields 

The modelled dry biomass yields followed well the 
measured samples in the C and I100 treatment through 
the whole season. By the time of the fourth sampling 
date, a big gap occurred between the modelled and the 
actual biomass yields in the I50 and I75 treatments, 
because the model underestimated until the final 
harvest date, but overestimated the final dry biomass 
yields. Overestimation of biomass by the model was 
observed by others as well in potato (Montoya et al., 
2016). Seasonal evolution of biomass was simulated 
with a high degree of accuracy in maize and 
AquaCrop predicted final biomass adequately 
(Greaves and Wang, 2016). In addition, close relation 
was found between measured and simulated biomass 
yield of winter wheat, influenced by various planting 
dates and irrigation strategies (Jin et al., 2014). This 
phenomena caused the lower correlation in these two 
treatments. High level of overestiomation in the dry 
biomass of tomato under water stress was found by 
others (Katerji et al., 2013). By contrast, the C and 
I100 treatments showed very strong correlation with 
small miscalculations in the final dry biomass yields. 
The correlation for all of the data is also strong. The 
shape of the growth curves of the C and I100 
treatments are very similar to each other and to the 
modelled curves too. On the other hand, the growth 
curves of the I50 and I75 treatments are different from 
the C and I100 curve’s and the modelled curve’s 
shape. This could happen because of the small sample 
size. Only four plants were taken as a sample at the 4th 
and 5th sampling date, where the model is greatly 
unprecise. The biomass reached the maximum in the 
I50 and I75 treatment to the 5th sampling date, which 

is significantly higher than at the end of the season 
according to the measurements. Sample size can be an 
explanation for this as well. However, this cannot be 
an explanation for the miscalculation of the final dry 
biomass yields, when ten plants were taken as a 
sample. Therefore, the small sample size and the 
model’s miscalculation together must be the reason 
for the modelling problems at the I50 and I75 
treatments. As conclusion we state that modelling dry 
biomass yields for processing tomato with AquaCrop 
is very promising when we irrigate according to 100% 
of potential ET, computed by the model itself. Very 
good result was found in the C as well. 
Overestimation in general was found in the work of 
Katerji et al. (2013) in the case of corn and tomato 
biomass evaluation in the late stages of crop cycles, 
moreover, overestimation in evapotranspiration was 
found as well. Important to note, that punctual 
irrigation and field management must be used for 
model setting as well as climate data from reliable 
source, in order to achive more accuracy. 
Nevertheless, miscalculated modelled values as a 
result in the deficit irrigated treatments are not usable 
in this state. The strong correlation and the error 
values for all of the data is very promising. It can be 
used for rough estimations well on big scale. The most 
important task from a practical point of view is the dry 
yield modeling. Harvest index as a crop development 
indicator was evaluated by Linker et al. (2016) and 
they concuded that the model estimate more biomass 
to vegetation than to fruit in the early and mid growth 
stages. Fine-tuning of the model with the data 
gathered from deficit irrigation experiment of 
processing tomato will be a task for the future.  
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