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SUMMARY 

 
Drought is one of the natural hazard risks which badly affects both agricultural and socio-economic sectors. Hungary, which is located in 

Eastern Europe has been suffering from different drought cycles; therefore, the aim of this study is to analyse the rainfall data obtained from 

ten metrological stations (Békéscsaba, Budapest, Debrecen, Győr, Kékestető, Miskolc, Pápa, Pécs, Szeged, Siófok, Szolnok) between 1985 

and 2016, by using the Standardized Precipitation Index (SPI). 

The results showed that 2011 was recorded as the worst drought cycle of the studied period, where the SPI ranged between -0.22 (extreme 

drought) in Siófok, and 0.15 (no drought) in Miskolc. In a similar vein, the study highlighted the year 2010 to be the best hydrological year, 

when the SPI reached 0.73 (mildly wet) on average. Interestingly, the Mann-Kendall trend test for the drought cycle showed no positive 

trends in the study area. Finally, more investigation should be conducted into the climate change spatial drought cycle in Europe. 
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INTRODUCTION 

 
Day by day, clues to the existence of climate 

change (CC) and global warming have become more 
and more of a reality. In the last decade many parts of 
the world have started to suffer from the consequences 
of CC, effects which include floods, drought, sea-level 
rise and conflict (Khedun et al., 2014; Hsiang et al., 
2013; Smith and Katz, 2013; Allen et al., 2010; 
Mundetia and Sharma, 2015; Hoang et al., 2018).  

On a global scale, agricultural activities are the 
main source of CC, where more than 14% of 
greenhouse gas (GHG) emissions come from 
agricultural sectors and approximately 17% from land 
use changes (Paul et al., 2018). This rapid increase in 
GHG emissions has altered global climate and led to 
more extreme weather events (Alter et al., 2018; 
Bento et al., 2018; IPCC, 2007; Snyder et al., 2009; 
Hoerling and Kumar, 2004; Spinoni et al., 2018). 

Recently, many parts of the world have been 
affected by global warming, which has had a 
catastrophic impact on natural resources, resulting in 
decreasing rainfall, and more intense and frequent dry 
spells, which worsen droughts in many regions of the 
globe (Naumann et al., 2018; Touma et al., 2015; 
Prudhomme et al., 2014) 

Drought is one of the phenomena that is affected 
rapidly by CC, due to the complex factors that lead to 
it (Spinoni et al., 2018; Wilhite et al., 2007), and it has 
started to affect new terrestrial ecosystems, especially 
in the last few years (Allen et al., 1998). Interestingly, 
as CC progresses, future drought will occur under 
warmer temperature conditions (Breshears et al., 
2005; Hoerling and Kumar, 2004; IPCC, 2001 ) and 
will have massive effects on vegetation cover (Allen 
et al., 1998; Kelly and Goulden, 2008; IPCC, 2007; 
He et al., 2018). 

Globally, drought is considered to be one of the 
most costly natural disasters, having killed more than 
11 million people and affected more than 2 billion 

people from 1900 to 2011; in particular, it affected 
more than 900 million people worldwide from 1999 to 
2010 (EMDAT, 2011; Wilhite, 2000; Ivits et al., 2014; 
EM-DAT, 2013; Spinoni et al., 2014). Historically, 
Europe has been hit by the drought cycle many times 
as a consequence of CC and global warming, causing 
approximately 100 billion Euros of damage from 1976 
to 2006 (Vogt et al., 2011a; van Lanen and Tallaksen, 
2008; Feyen and Dankers, 2009; Lindner et al., 2010; 
Dai, 2011). However, the future climate for Europe is 
predicted to be higher temperatures with extreme 
climate events, changing precipitation patterns and a 
higher probability of drought cycles (Rowell, 2005; 
Beniston et al., 2007). 

On a regional scale, southern Europe is subjected 
to increasing drought frequency and severity, with a 
remarkable increase noticeable in the Carpathian 
region (Spinoni et al., 2013, 2014; Spinoni et al., 
2015a, 2015b; Spinoni et al., 2018); in contrast, 
northern regions recorded a wetter and cooler climate 
(Kingston et al., 2015). Feyen and Dankers (2009) 
concluded that CC will badly affect river basins in 
Europe, particularly in the southern parts of Europe, 
due to water stress, which is an increasing drought 
hazard. Similarly, Ivits et al. (2014) indicate that 
ecosystems in the Western Atlantic regions and 
Eastern Europe are vulnerable to climate change, and 
increases in drought frequency or intensity may result 
in great impacts on these ecosystems.  

Hungary, which is located in the Carpathian 
Region, is subjected to climate change, as are other 
countries in Europe (Gálos et al., 2007). Spinoni et al. 
(2015a) emphasize the positive trends of heat wave 
events in the entire Carpathian Region, while cold 
waves tend to be less frequent and shorter. Similarly, 
Gálos et al. (2007) predicted a drying tendency until 
the end of 21st century, especially in summer 
(Bartholy et al., 2013; Pongrácz et al., 2014;). Many 
other studies have been conducted in Hungary in order 
to track CC; Blanka et al. (2013) reported an expected 
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an increase in the drought hazard due to climate 
change, using regional climate models (REMO and 
ALADIN). Domonkos (2003) analysed the monthly 
precipitation data from 14 Hungarian stations (1901–
1998) and reported an important main change in the 
mean summer precipitation with an increase in 
summer drought frequency, In the same context, 
Kocsis and Anda (2017) detected a significant 
decreasing tendency of rainfall in Keszthely, which 
will make it unfavourable for agricultural cultivation. 

The principal aim of this study is to the track 
drought cycle in ten metrological stations 
(Békéscsaba, Budapest, Debrecen, Győr, Kékestető, 
Miskolc, Pápa, Pécs, Szeged, Siófok, Szolnok) from 
1985 to 2016 by using the Standardized Precipitation 
Index (SPI). 
 
MATERIALS AND METHODS 

 
Monthly precipitation and yearly average 

temperature series covering the period 1985–2016 
from 10 Hungarian observing stations were used in 
this research. The data was obtained from The 
Hungarian Central Statistical Office (1985–2016). 
The Simple Linear Regression Model (SLRM), which 
can be defined as follows: 
 

Y= ẞ+  ᾳX 
 

where Y is a dependent variable, X is an 
independent variable, and ẞ and ᾳ: are regression 
coefficients, has been applied to estimate the trend of 
climate data (temperature and rainfall) from 1900 to 
2015. 

The Standard Precipitation Index (SPI) (McKee et 
al., 1995) has been used as an indicator of drought. 
SPI statistically converts the gamma distribution 
probability into a series of linear data with natural 
distribution, where the mean value is equal to zero 
(Table 1). Positive values mean an increase in rainfall 
and negative values mean a decrease in rainfall, 

according to the following equation: 

𝒈(𝒙) =  
𝟏

𝑩𝒂Ѓ𝒂
𝒙𝒂−𝟏𝒆−𝒙 𝑩⁄  

Ѓ(𝒂) = ∫ 𝒚𝒂−𝟏𝒆−𝒚
∞

𝟎

𝒅𝒚 

Where: 
Ѓ(a): gamma distribution probability, x Rainfall, a: 

shape parameter, B: scale parameter. 
 

Table 1 

Drought categories from SPI 

 

 
After calculating the SPI Index, the trends were 

checked using the Mann-Kendall test (Mann, 1945; 
Kendall, 1975) to detect the presence or absence of an 
increasing or decreasing trend within a time series 
(Szelepcsényi et al., 2018). 

 
RESULTS AND DISCUSSION 

 
3-1- Trends of observed climate data: 

The statistical analysis showed a general positive 
trend in both rainfall and temperature, although in 
most of the cases these changes are not significant, as 
can be seen in Tables 2 and 3. 

Rainfall has shown no significant changes, except 
for the Miskolc station, where the changes were 
significant; the average rainfall ranges between 525 
and 785 mm. The temperature showed a positive trend 
(nonsignificant; P > 0.001), and some changes were 
significant, i.e. in Győr, Kékestető, Pápa, and Pécs, 
over the period between 1985 and 2015. 

 
Table 2 

Statistical analysis of rainfal data series (1985–2016) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

SPI Value Drought category  

0 to – 0.99  Mild drought  

-1.00 to –1.49  Moderate drought  

-1.5 to –1.99 Severe drought  

-2.00 or less Extreme drought  

 Mean Minimum Maximum Standard deviation SLRM Trend Sig 

Békéscsaba 568 310 836 128 Y= 534.5+ 2.02X + non 

Budapest 525 291 842 130 Y= 492.58+ 1.9X + non 

Debrecen 548 391 845 106 Y= 525.5+ 3.5X + non 

Győr 560 390 906 111 Y= 481.69+ 2.85X + non 

Kékestető 785 489 1111 153 Y= 741.8+ 2.6X + non 

Miskolc 591 334 999 156 Y= 465.5+ 7.6X +** 99% 

Pápa 593 379 835 135 Y= 545.2+ 2.88X + non 

Pécs 657 405 981 130 Y= 549.9+ 3.7X + non 

Siófok 554 287 894 142 Y= 510.6+ 2.6X + non 

Szeged 524 203 842 141 Y= 457.8+ 3.99X + non 

Szolnok 531 319 835 141 Y= 501+ 1.7X + non 
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Table 3 

Statistical analysis of avareg temprature data series (1985–2016) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3-2- SPI analyse: 
As can be seen from Figure 1, the SPI (drought) 

has changed over time from 1985 till 2015, which 
reflects the characteristics of precipitation changes 
through the years. The results show that Békéscsaba; 
Budapest, and Miskolc were affected by 3 drought 
events (with an SPI of less than 0), while Pápa and 
Siófok were affected by 2 drought events (an SPI of 
less than 0), and 5 drought events (an SPI of less than 
0). The results also showed that the years 2000 and 

2011 were the worst in the studied time series, in 
which most of the stations recorded a negative SPI 
value. Interestingly, the Mann-Kendall trend test for 
the drought cycle showed no positive trends in the 
study area. 

Principle component analysis showed a potential 
drought in Debrecen, Győr, Kékestető, and Miskolc, 
while the correlation matrix showed a good agreement 
between SPI for all the studied locations, as can be 
seen in Table 4. 

 

 

Figure 1: Distribution of Standardized Precipitation Index (SPI) in the study area 

 

 

 

Our results are in accord with other researchers, 
including Matyasovszky et al. (1999), who reported a 
warmer and drier temperature over the last century in 
Hungary due to increased atmospheric greenhouse 
gases, a finding supported by many researchers, e.g. 
Hanssen-Bauer et al. (2005), Bartholy et al. (2007), 
Havril et al. (2018). Similarly, many scholars have 
indicated drought trends in Hungary, especially in 
2011, due to climate change and a lack of precipitation 

e.g. Bartholy et al. (2014), Móricz et al. (2018). On 
the contrary, there are no records in the research of 
increased rainfall along Hungary, although our 
positive trend was not statistically significant. 

In conclusion, further studies should be conducted 
with an emphasis on drought trends in Hungary, and 
the SPI should be calculated on a different scale in 
order to track drought changes through the seasons.   

  

 Mean Minimum Maximum Standard deviation SLRM Trend Sig. 

Békéscsaba 10.919 9.200 12.400 0.873 Y= 9.8+ 0.06X + non 

Budapest 11.878 10.400 13.300 0.824 Y= 10+ 0.05X + non 

Debrecen 10.613 8.700 12.200 0.809 Y= 9.6+ 0.06X + non 

Győr 10.769 9.100 11.900 0.796 Y= 9.9+ 0.05X +** 99% 

Kékestető 10.900 9.400 12.300 0.819 Y= 5.2+ 0.05X +** 99% 

Miskolc 6.088 4.700 7.400 0.780 Y= 8.86+ 0.07X + non 

Pápa 10.688 9.100 11.800 0.715 Y= 9.9+ 0.04X +** 99% 

Pécs 10.075 8.100 11.700 0.901 Y= 10.33+ 0.05X +** 99% 

Siófok 10.813 9.500 12.200 0.797 Y= 10.36+ 0.6X + non 

Szeged 10.638 9.100 11.900 0.756 Y= 10.16+ 0.05X + non 

Szolnok 11.163 9.600 12.300 0.806 Y= 9.97+ 0.06X + non 
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Table 4 

Correlation matrix within studied locations (SPI) 

 

 

Bék Budt Deb G Kék Misk Páp Pé Szeg Sió 

Budt 0.709          

Deb 0.667 0.638         

G 0.654 0.787 0.679        

Kék 0.654 0.787 0.679 1.000       

Misk 0.735 0.769 0.739 0.772 0.772      

Páp 0.606 0.524 0.454 0.495 0.495 0.478     

Pé 0.669 0.693 0.559 0.512 0.512 0.682 0.634    

Szeg 0.897 0.706 0.647 0.598 0.598 0.754 0.625 0.798   

Sió 0.699 0.751 0.595 0.689 0.689 0.660 0.796 0.852 0.746  

Szo 0.858 0.818 0.729 0.757 0.757 0.780 0.674 0.703 0.821 0.804 
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