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SUMMARY 
 

Characterization of heavy metal polluted abandoned mining 
sites is complicated, as the spatial distribution of pollutants often 
changes dramatically.  

In our study, a hyperspectral data analysis of the 
Gyöngyösoroszi abandoned Pb-Zn mine, located in northern 
Hungary, where Záray (1991) reported serious heavy metal 
contamination, was carried out using ENVI 4.3. In this area, 
galena (PbS), goethite (FeO(OH)), jarosite (KFe3(SO4)2(OH)6), 
sphalerite ((Zn, Fe)S) and pyrite (FeS2) were the predominant 
minerals in the alteration zones was chosen as the target mineral. 
Spectral angle mapper (SAM) and BandMax classification 
techniques were applied to obtain rule mineral images. Each pixel 
in these rule images represents the similarity between the 
corresponding pixels in the hyperspectral image to a reference 
spectrum. 

As a result of hyperspectral imagery the distribution of pyritic 
minerals (sphalerite, galena) in the area was defined. Both of the 
mineral formations occur, especially in mine tailings, the area of 
the ore preparatory, and the Szárazvölgyi flotation sludge 
reservoir. According to the results, jarosite and goethite have 
similar distributions to sphalerite and galena. The results showed 
that hyperspectral remote sensing is an effective tool for the 
characterization of Pb, Zn and Fe containing minerals at the 
examined polluted sites and for modelling the distribution of heavy 
metals and minerals in extensive areas.  

This classification method is a basis of further detailed 
investigations, based on field measurements, to map the heavy 
metal distribution of the studied area and to quantify the 
environmental risks caused by erosion, which include DEM 
(digital elevation model) and climatic and hydrological data 
sources. Furthermore, it can be used primarily to support the 
potentially applicable phytostabilization technique and to isolate 
hot spots where only ex-situ remediation techniques can be 
applied. 
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INTRODUCTION 
 

The characterization of heavy metal polluted 
abandoned mining sites is a complicated assignment 
due to the variable spatial distribution of the 
pollutants. Therefore, a complex integrated method is 
required in order to assess precisely the amount and 
the distribution of the contaminants. Several 
publications dealt with acid mine drainage (Szucs et 
al., 2002; Yan and Bradshaw, 1995) and soil plant 
systems for characterization of the distribution of 
heavy metals (Kabata-Pendias, 2001; Csathó, 1994; 

Abdorhim et al., 2004; Kádár, 1991), but the 
assessment of heavy metal distribution by mapping 
technologies has not been well studied. Several 
publications dealt with the successful application and 
the advantages of hyperspectral remote sensing 
(Kardeván et al., 2003; Juhász et al., 2004; Burai, 
2006).  

Remote sensing is the science of acquiring, 
processing, and interpreting images and related data, 
acquired from aircraft and satellites, that record the 
interaction between matter and electromagnetic 
energy (Sabins, 1997). Remote sensing imagery has 
contributed significantly to mineral exploration. For 
example, mapping of geological faults and fractures 
that localize ore deposits and recognize 
hydrothermally-altered rocks based on their spectral 
signatures (Sabins, 1999). A major problem with 
remote sensing approaches to mineral exploration 
using broad-band multispectral sensors is the 
insufficient spectral resolution to map hydrothermal 
alteration minerals, which exhibit subtle differences 
in spectral signatures (Clark, 1999). 

Small bandwidths distinguish hyperspectral 
sensors from multispectral sensors, acquiring spectral 
information of materials usually over several 
hundreds of narrow contiguous spectral bands, with 
high spectral resolution on the order of 20 nm or 
narrower (Polder and van der Heijden, 2001). As 
such, they allow identification of specific materials, 
whereas broadband multispectral data only allow 
discrimination between classes of materials (Kruse et 
al., 2003). 

The examined area is a flotation sludge reservoir 
of an abandoned Pb-Zn mining site located in 
Gyöngyösoroszi, Northern Hungary, where Záray 
(1991) reported serious heavy metal contamination. 
At the examined site, the properties and the contents 
of the mine tailings are different, due to their 
different technological origin. At the same time, the 
terrain and hydrological properties are also variable 
(Jordan and D’Alessandro, 2004) contributing to 
water erosion of the mining tails, which results 
diffuse heavy metal contamination of the surrounding 
area. The hyperspectral images of the flotation sludge 
reservoir were obtained by using a Digital Airborne 
Imaging Spectrometer DAIS 7915, in the frame of 
DLR HySens first Hungarian hyperspectral flight 
campaign (21/08/2002). The DAIS 7915 sensor is a  
79-channel high-resolution optical airborne imaging 
spectrometer which collects information in five 
blocks of contiguous channels in the wavelength 
region of 0,4 to 12,3 µm. The DAIS sensor recorded 



AGRÁRTUDOMÁNYI KÖZLEMÉNYEK, 2007/26. KÜLÖNSZÁM 
 

 120

spectra at SWIR I,II (1.5-1.8; 2.0-2.5), which was 
used for the determination of heavy-metal containing 
minerals, and the spectrum of VIS/NIR (0.43-1.05) 
was used for providing spectral information on 
uncovered surface and the biomass of the area 
(Kardeván et al., 2003). 

The present study aims to use the Spectral Angle 
Mapper (SAM) with BandMax to classify galena 
(PbS), goethite (FeO(OH)), jarosite 
(KFe3(SO4)2(OH)6), sphalerite ((Zn, Fe)S), pyrite 
(FeS2) and to obtain rule images. The BandMax 
process increases classification accuracy by 
determining an optimal subset of bands to help you 
separate your targets from known background 
materials. The BandMax algorithm was developed by 
the Galileo Group, Inc. The process is based on the 
United States patent application titled Spectral image 
processing system and method for target detection 
and identification. 

Each pixel in a rule image represents the 
similarity between the corresponding pixels in the 
hyperspectral image to a reference spectrum. These 
rule images are then used to govern sampling to areas 
with a high probability of galena, gothite, jarisite, 
sphalrite, pyrite occurring and to intensively sample 
in areas with an abundance of alunite. This 
effectively delineates favourable areas from 
unfavourable ones and provides an objective 
sampling scheme as an initial guideline. 
 
MATERIALS AND METHODS 
 

SAM (Spectral Angle Mapper) is an automated 
method for comparing image spectra to individual 
spectra or to a spectral library (Boardman and 
Huntington, 1996; CSES, 1992; Kruse et al., 1993). 
SAM assumes that the data have been reduced to 
apparent reflectance (true reflectance multiplied by 
some unknown gain factor, controlled by topography 
and shadows). The algorithm determines the 
similarity between two spectra by calculating the 
spectral angle between them, treating them as vectors 
in n-D space, where n is the number of bands. 
Smaller angles represent closer matches to the 
reference spectrum.   

Consider a reference spectrum and an unknown 
spectrum from two-band data. The two different 
materials are represented in a 2D scatter plot by a 
point for each given illumination, or as a line (vector) 
for all possible illuminations (figure 1).  

Because SAM uses only the direction of the 
spectra, not the length, SAM is insensitive to the 
unknown gain factor. All possible illuminations are 
treated equally. Poorly illuminated pixels fall closer 
to the origin of the scatter plot. The colour of a 
material is defined by the direction of its unit vector. 
The angle between the vectors is the same, regardless 
of the length. 
 

Figure 1: 2D scatter plot 

 
The length of the vector relates only to how fully the 
pixel is illuminated. The SAM algorithm generalizes 
this geometric interpretation to n-D space. SAM 
determines the similarity of an unknown spectrum t 
to a reference spectrum r, by applying the following 
equation (CSES, 1992):  

which also can be written as:  

where nb equals the number of bands in the image. 
 
For each reference spectrum chosen in the 

analysis of a hyperspectral image, the spectral angle 
(in radians) is determined for every image spectrum 
(pixel). This value is assigned to the corresponding 
pixel in the output SAM image, one output image for 
each reference spectrum. The derived spectral angle 
maps form a new data cube with the number of bands 
equal to the number of reference spectra used in the 
mapping. Gray-level thresholding is typically used to 
empirically determine areas that most closely match 
the reference spectrum while retaining spatial 
coherence.  

The SAM algorithm implemented in ENVI 4.3 
takes as input a number of training classes, or 
reference spectra from ASCII files, ROIs (Region Of 
Interest), or spectral libraries.  
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It calculates the angular distance between each 
spectrum in the image and the reference spectra or 
endmembers in n-dimensions. The result is a 
classification image showing the best SAM match at 
each pixel and a rule image for each endmember 
showing the actual angular distance in radians 
between each spectrum in the image and the 
reference spectrum. Darker pixels in the rule images 
represent smaller spectral angles spectra that are 
more similar to the reference spectrum. The rule 
images can be used for subsequent classifications 
using different thresholds to decide which pixels are 
included in the SAM classification image. The 
classified image based on the SAM Maximum Angle 
Threshold. Decreasing this threshold usually results 
in fewer matching pixels (better matches to the 
reference spectrum). Increasing this threshold may 
result in a more spatially coherent image; however, 
the overall pixel matches will not be as good as for 
the lower threshold. 

BandMax process allows you to select the input 
background spectra and displays the BandMax 
results and enables you to change the parameters of 
the process to determine an optimal solution.  

BandMax rejects background data by determining 
a subset of spectral image bands that are useful in 
distinguishing between target and background 
spectra. Each band in the input image has a 
significance value calculated for it by the BandMax 
algorithm. The default BandMax threshold is 
calculated by attempting to select 25% of the input 
bands, but never fewer than 6 bands. This unitless 
value ranges from 0 to 1, where a higher value 
indicates that the band has a higher probability of 
being able to distinguish target response from 
background response. The resulting band subset 
maximizes the contrast between selected target and 
backgrounds. This subset can then be used as input to 
a SAM analysis to reduce processing time and 
increase accuracy in processing the data by helping 
to discriminate targets from background clutter.  
 
RESULTS 

 
Determinations of the examined minerals based 

on the spectral profiles of the pixels of the area were 
carried out based on the USGIS standard spectral 
profiles (figure 2) on the barren places. Spectral 
profile of some pixels from the barren spots shows 
high reflectance in at SWIR I,II  
(1.5-1.8; 2.0-2.5), which was used for the 
determination of heavy-metal containing minerals 
(figure 3). 

Applying the Spectral Angle Mapper with 
BandMax classification, the distribution of pyritic 
mineral (galena, pyrite and sphalerite) in the area was 
defined. The mineral formation occurs especially at 
the levees and the barren places of the Szárazvölgyi 
flotation sludge reservoir (figure 4). 
 

Figure 2: USGIS standard spectral profiles as backgrounds 

 
Figure 3: Spectral profile of a target pixel from a highly 

polluted spot 

 
During the BandMax process, according to automatic 
calculations the classification was carried out with 16 
significant bands, which is the 25% out of all of the 
used bands. The band max significance threshold at 
this percentage ranges between 0.48-0.69 (galena 
0.69, jarosite 0.49, pyrite 0.65, goethite 0.54 and 
sphalerite 0.48) which means that the 16 bands can 
distinguish the background and target spectra with 
medium confidence. After that SAM analysis was  
carried out with the application of the results of Band 
Max.  The SAM maximum angle threshold was 0.10.  

With the use of hyperspectral imagery the 
distribution of pyritic minerals (sphalerite, pyrite 
galena) in the area was defined. Both of the mineral 
formations occur at the same distribution in flotation 
sludge reservoir. According to the results, jarosite 
and goethite have similar spatial distributions to 
those of sphalerite and galena, but the distribution of 
jarosite and goethite are not as significant as pyritic 
materials.  

The results showed that hyperspectral remote 
sensing is an effective tool for the characterization 
and modelling the distribution of Pb, Zn and Fe 
containing minerals at the examined heavy metal 
polluted sites.  
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Therefore, this technology could be used for fast 
environmental assessment, since it provides a wide 
range of information quickly. Although validation 
(field measurements, soil samples) is necessary in 

order to obtain more precise results; nevertheless, the 
effects of vegetation and other objects should also be 
assessed.  

 
Figure 4: The original and the classified areas based on the standard spectral profile of  

1: galena, 2: goethite, 3: jarosite, 4: pyrite, 5: sphalerite 
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