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SUMMARY 
 

Today, the use of chemical fertilisers is significantly determined by their production and purchase costs, which are high.  In contrast, 

phosphorus (P) is present in sewage sludge in a form that is easy for plants to absorb. Good quality sewage sludge compost (SSC) could 

contain a high quantity of P, together with other macro- and microelements and organic matter. The effect of regular SSC application on soil 

characteristics as well as plant parameters has been studied since 2003 in Nyíregyháza in a small plot experiment. Focusing on the P in the 

soil-plant system, our hypothesis was that SSC covers plants’ P demand through enhancing soil P content and its plant availability in the 

acidic sandy soil. The effect of the SSC was examined at the doses of 0, 9, 18, and 27 t ha-1 on rye as a test crop. Some soil chemical parameters 

(pH, soil organic matter - SOM, ammonium lactate (AL) extractable P2O5), and the relationship between plant development (green weight, 

shoot length), physiological parameters (SPAD index), plant shoot P content, and soil available P content were studied. The obtained data 

indicated that the SOM content, pH, and available P content of the treated plots increased as a result of the long-term applied SSC compared 

to the control. Measurement of the relative chlorophyll content showed a strong correlation with the available P content of the soil, but 

surprisingly less correlation with shoot P content was found. The results of plant biomass and soil P content proved that SSC could be used as 

a low-cost and good source of P for plants. 
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INTRODUCTION 
 
One of the limiting factors for plant development is 

the available P content of the soil. The form in which 
the nutrients are present and how they can be mobilized 
is a decisive factor in plant nutrient uptake. Plants' 
access to nutrients depends on the form and bond the 
nutrients are found in the soil (Singh et al., 2022). The 
uptake of nutrients is influenced by several factors, 
including the soil physical, chemical and 
microbiological properties (Bennett and Klironomos, 
2019; Frene et al., 2024). Most of the P forms of the 
soil consist of insoluble P fractions, which are not or 
are difficult to be absorbed by plants (Raghothama, 
2005). The inorganic P is easily and directly available 
in the form of H2PO4

- and HPO4
2-, which are in low 

quantities in soil (Murphy and Sims, 2012). 
The success of plant cultivation is strongly 

influenced by the supply of organic matter (OM) and 
adequate nutrients. The acidic sandy soils are poor in 
OM, colloids and nutrients, and have unfavorable water 
and heat management, the solubility and uptake of P are 
low (Penn and Camberato, 2019; Ogunniyi et al., 
2021). The raw material of P fertilisers is not a 
renewable resource, the European Union has classified 
rock phosphate as a critical raw material (European 
Commission, 2017; Blackwell et al., 2019). The low-
quality rock phosphate contains heavy metals such as 
cadmium and uranium, which are toxic to soil, plants, 
and humans (Bigalke et al., 2017). The inorganic 
phosphate content of soil quickly immobilizes with the 
reactive cations Ca2+, Mg2+ of the alkaline, and Al3+ and 

Fe3+ of the acidic soils, resulting in water insoluble 
complexes (Ludewig et al., 2019). 

There are many sources of organic nutrients that are 
not sufficiently utilised as soil amendments. Although 
organic fertilisers contain nutrients in a lower 
concentration than chemical ones and the 
decomposition of OM is generally slow, they have 
complex and positive effects on soils. The use of 
chemical fertilisers could lead to acidification of soil, 
disrupt the nutrient balance in the soil, pollute the 
surface and ground water, and reduce soil 
microbiological diversity (Francioli et al., 2016; 
Barros-Rodríguez et al., 2021). The increasing amount 
of sewage sludge associated with population growth 
can make it suitable for partial replacement of P 
fertiliser due to its high OM and increased macro- and 
micronutrients level, among them the available 
nitrogen (N), phosphorus (P), potassium (K) content. 
The possible way to improve the physical and chemical 
properties of sandy soils, to maintain healthy soil life 
and fertility, and to preserve biodiversity is to supply 
adequate OM to the soil (Roghanian et al., 2012; Sayara 
et al., 2020). 

The above-ground biomass is determined by 
different factors, among them the environmental 
conditions (Mavromatis et al., 2002). The addition of 
sewage sludge with various organic substances has 
favorable agronomical benefits through the effect on 
the development parameters of plants due to valuable 
nutrients and a significant amount of carbon recovery 
(da Silva et al., 2021). For the estimation of above-
ground biomass and crop yield, the chlorophyll content 
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is also used in the models (Liu et al., 2019) because 
different chlorophyll forms play a role in the plant 
assimilation processes (Seaton and Walker, 1990). 

In addition to replenish the soil with nutrients and 
OM, properly treated sewage sludge compost (SSC) 
improves the soil structure and water management 
conditions, increases crop yield, and soil biological 
activity (Makádi et al., 2006; Aranyos et al., 2016). 
Organic nutrient supplements derived from sewage 
sludge are among the products with a slow release of 
active ingredients (Talboys et al., 2016) and contain P 
in different forms, which type and amount depends on 
the wastewater treatment or the chemical composition 
of the composted materials (Grigatti et al., 2015). We 
hypothesised that long-term application of SSC could 
increase the soil available P content and promote the 
healthy development of plants. In this study, we 
focused on the relationship between soil P content and 
plant biomass, moreover, some plant physiological 
parameters, to determine the role of SSC in P supply of 
the rye plant. 
 
MATERIALS AND METHODS 

 
Study area and experimental design 

The small plot sewage sludge compost experiment 
was set up in the spring of 2003 at the University of 
Debrecen, IAREF, Research Institute of Nyíregyháza. 
The study area is located at 47.988724N latitude and 
21.702869E longitude and is situated at the elevation of 
106 m. The typical soil type of the experimental area is 
Arenosol (Dystric, Lamellic Arenosol) according to 
WRB (2014 – updated 2015)] with 87.69% sand, 2.67% 
silt, 9.64% clay. 

The used SSC was jointly developed by the 
Research Institute of Nyíregyháza and the local sewage 
treatment plant, Nyírségvíz Ltd. This compost is 
available as a product called Nyírkomposzt, and its 
quality meets the requirements of 36/2006. (V.18.) 
Decree of Ministry of Agriculture. The composition of 
the compost used in the experiment was: sewage sludge 
(40% m/m), straw (25% m/m) as organic matter, and 
rhyolite (30% m/m), bentonite (5% m/m) as a mineral 
component. 

The SSC was ploughed until ~ 25 cm depth soil 
layer following the field application. A total of 60 plots 
in the experimental area were designed in 3 × 4 layouts 
with five replications (called as blocks in the text), in 
crop rotation. The size of the plots within the blocks is 
12 m × 19 m. The test crops of the experiment are rye 
(Secale cereale ‘Varda’), rye with hairy vetch (Secale 
cereale ‘Varda’ and Vicia villosa ‘Hungvillosa’), and 
maize (Zea mays ‘Torino’) from 2018. In our study the 
test plant was the rye. Similar to farmyard manure, the 
compost was applied every 3rd year after harvest at 
three rates so the treatments were the following: T1: 0 
t ha-1; T2: 9 t ha-1; T3: 18 t ha-1; T4: 27 t ha-1 SSC 
treatment. The control plots never received either SSC 
or chemical fertiliser. Apart from the SSC, the treated 
plots did not receive any other fertiliser. The SSC was 
analyzed before application in the Central Laboratory 
of Nyírségvíz Ltd., according to the Hungarian 

Standards. The pH of the applied SSC was 7.1, OM 
content was 24.6%, and total P2O5 content was 26,800 
mg kg-1 in 2021. 
 
Sampling and analysis 

Soil and plant samples were collected during the 
growing season of 2023 at the end of tillering, and ear 
emergence stages. Composite soil samples were 
collected from the ploughed 0–20 cm soil layer, from 
each plot. Well homogenized composite samples were 
sieved (Ø 2 mm), air dried, and stored until the 
chemical measurements. Soil pH was measured in 1:2.5 
soil: 1M KCl suspension (Buzás, 1988), soil organic 
matter (SOM) was determined according to Tyurin 
method (Buzás, 1988), while the plant available AL-
P2O5 extracted according to the Hungarian Standard 
(MSZ 20135:1999). 

Plant samples were taken from an area of 2 × 0.5 m 
per plot. The fresh weight of plant biomass was 
determined at the end of tillering and ear emergence 
stages. Plant P content was measured according to the 
Hungarian Standard (MSZ-08-1783-4:1983). The 
relative chlorophyll content was measured with SPAD-
502 Plus chlorophyll meter (Konica Minolta, Japan). 
SPAD index was measured five times on the surface of 
a flag leave on 10 selected plants in each plot, and then 
the mean values of plots were used for the statistical 
analysis. The measurements were taken between 10:00 
and 12:00 hours at the end of the ear emergence stage. 

 
Statistical analysis 

The data were evaluated with IBM SPSS v29 
statistical package. The treatment effects were analyzed 
by one-way ANOVA while means were compared 
using Tukey’s HSD test at 95% significance level. The 
relationships among measured variables were 
calculated with Pearson’s correlation analysis (p<0.05). 

 
RESULTS AND DISCUSSION 

 
The results showed that each applied dose of the 

SSC significantly increased the soil pH compared to the 
control plots at both sampling times, mostly in the plots 
with doses of 18, and 27 t ha-1 of SSC (Figure 1). The 
pH increased from 4.5 (control) to 6.4 (27  
t ha-1) at the end of the tillering stage and from 4.2 
(control) to 6.2 (27 t ha-1) at the end of the ear 
emergence stage. The uptake of P and other nutrients, 
the soil microbial activity is influenced by soil pH 
(Husson, 2013). Organic substances added to the soil 
neutralize the effect of acids through functional groups 
influencing the chemical properties of humic 
substances (Wong and Swift, 2001). Uzinger et al. 
(2020) also observed the beneficial effect of compost 
on soil pH and OM content. 

The values of the SOM were higher in all treatments 
compared to the control plots, especially in the 18, and 
27 t ha-1 treatments. The values increased from 0.56% 
(control) to 0.78% (27 t ha-1) at the end of tillering stage 
and from 0.67% (control) to 0.79% (27  
t ha-1) at the end of ear emergence stage (Figure 2). The 
last application of the SSC was two years ago, and there 
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is a constant difference in the OM content between the 
treatments over the years. The long-term applied 
compost mostly keeps the OM content of soil by 18–
39% higher compared to the control. The SOM is a 
source of macro- and microelements, it has a favorable 
effect on the water balance and structure of the soil. 

Moreover, it plays a major role in soil carbon 
sequestration, reduces the rapid pH changes of soil, and 
determines the soil microbial biomass (Zdruli et al., 
2004). Based on the above mentioned changes in some 
soil chemical properties, the SSC application could 
result in favorable conditions for plant development.

 
Figure 1. Soil pH (KCl) (mean±SD) in 0-20 cm layer at the end of tillering and ear emergence stages (Nyíregyháza, 2023) 

 

 

Small and capital letters indicate significant differences among treatments according to Tukey’s HSD test in the two sampling times (p<0.05). 

SD: standard deviation. T1: 0 t ha-1; T2: 9 t ha-1; T3: 18 t ha-1; T4: 27 t ha-1 SSC 

 
Figure 2. Soil organic matter (SOM) (mean±SD) in 0-20 cm layer at the end of tillering and ear emergence stages 

(Nyíregyháza, 2023) 

 

 

Small and capital letters indicate significant differences among treatments according to Tukey’s HSD test in the two sampling times (p<0.05). 

SD: standard deviation. T1: 0 t ha-1; T2: 9 t ha-1; T3: 18 t ha-1; T4: 27 t ha-1 SSC 

 
The availability of soil P is significantly influenced 

by soil pH through the microbial mineralization 
processes (Fierer and Jackson, 2006). Moreover, it is 
well known that soil pH below 5.5 reduces the amount 
of available P through the formation of complexes with 
Al3+ and Fe3+ (Grzebisz et al., 2024). Figure 3 shows 
AL-P2O5 content of soil in the 0–20 cm layer. The 
concentration of soil AL-P2O5 showed a significant 
increase in each treatment compared to the control plots 
at both sampling times, where the lowest AL-P2O5 

content was measured in the control plots (72 and 76 
mg kg-1, respectively), while the highest values were 
recorded in the 27 t ha-1 SSC treated plots (568 and 563 
mg kg-1, respectively). 

The used compost contained a large amount of total 
P2O5 and it also increased the amount of solubilized P 
in the soil by reducing the strength of soil P adsorption 
onto soil particles (Bai et al., 2024). AL-P2O5 content 
slightly decreased during the flowering stage due to the 
more intensive P intake of plants. The amount of 
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available P forms could be changed by the content of 
OM in the compost, through its buffering effect, or by 
the P access strategy of plants and soil microorganisms 
(Bünemann, 2015; Wang and Lambers, 2020). The 
SSC treatments increased the pH, thereby increasing 
the availability of P in the soil. The composted sewage 
sludge with straw increased the easily soluble fractions 

(H2PO4
− and HPO4

2−) of P in comparison to NPK 
fertiliser, farmyard manure, composted municipal 
waste, and composted municipal green waste 
(Wierzbowska et al., 2020). Results of Farsang et al. 
(2020) showed that composted sewage sludge delivered 
a larger amount of AL-P2O5 in 0–30 and 30–60 cm soil 
depth compared to the control. 

 

Figure 3. AL-P2O5 content in 0-20 cm soil layer at the end of tillering and ear emergence stages (Nyíregyháza, 2023) 

 

 
Small and capital letters indicate significant differences among treatments according to Tukey’s HSD test in the two sampling times (p<0.05). 

SD: standard deviation. T1: 0 t ha-1; T2: 9 t ha-1; T3: 18 t ha-1; T4: 27 t ha-1 SSC 

 
The effect of compost treatments on plant 

development was represented by the green mass of the 
shoot at two morphological stages. All treatments 
caused an increase in shoot green weight (Figure 4), the 
highest mean values were obtained from the 18 and 27 
t ha-1 SSC treatments. The higher amount of available 
P resulted in higher biomass by increasing the 
efficiency of photosynthesis.  

The P participates in almost every physiological 
process of the plant, it builds cell-forming units like 

nucleic acids, phospholipids, high-energy compounds, 
and enzymes. In the absence of P, the development and 
growth of plants and roots slow down, flowering is 
delayed, the number of flowers, the yield, and plants’ 
tolerance to biotic and abiotic stress decrease 
(Richardson et al., 2009; Jezek et al., 2023). As a result 
of these functions, one of the characteristics of P 
deficiency is the reduction of biomass. 

 

Figure 4. Green weight of rye at the end of tillering and ear emergence stages (Nyíregyháza, 2023) 

 

 
Small and capital letters indicate significant differences among treatments according to Tukey’s HSD test in the two sampling times (p<0.05). 

SD: standard deviation. T1: 0 t ha-1; T2: 9 t ha-1; T3: 18 t ha-1; T4: 27 t ha-1 SSC 
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The shoot length of treated plants at the end of the 
tillering stage was higher compared to control plots 
(Figure 5). In the 27 t ha-1 SSC treatment, shoot length 
significantly differed from the data measured in the 
control treatment. In the non-treated plots, due to the 

limited amount of available P and other elements, plant 
growth was retarded. The increase in shoot mass and 
plant height is probably due to the fact that other 
nutrients, besides P, also become more available to the 
plants (Abd Elsalam et al., 2021). 

 

Figure 5. Shoot length of rye at the end of tillering stage (Nyíregyháza, 2023) 

 

 

Small letters indicate significant differences among treatments according to Tukey’s HSD test (p<0.05). SD: standard deviation. T1: 0 t ha -1; 

T2: 9 t ha-1; T3: 18 t ha-1; T4: 27 t ha-1 SSC 

 
Measuring the chlorophyll content of the leaves 

provides information about plant assimilation 
processes. Plants need N and P to synthesize 
chlorophyll. The lack of P reduces the chlorophyll 
content in the photosynthesizing plant parts, as well as 
reduces the size and density of the stomata, which 

reduces the absorption of CO2, thus reducing the 
efficiency of photosynthesis and the synthesis of 
carbohydrates (Jacob and Lawlor, 1991; Carstensen et 
al., 2018). The main characteristic of P deficiency is 
biomass reduction (Meng et al., 2021), which is 
illustrated well in Figure 6. 

 

Figure 6. Rye plants from control and treated plots of long-term sewage sludge compost experiment 

(Nyíregyháza, 2023) 

 

 

T1: 0 t ha-1; T2: 9 t ha-1; T3: 18 t ha-1; T4: 27 t ha-1 SSC 

 
Figure 7 shows the changes in shoot P content and 

the SPAD index at the ear emergence stage of rye. The 
leaf relative chlorophyll content of treated plants is 
significantly higher compared to the data measured in 
the control plots. Our measurements indicated that the 
use of SSC increased photosynthetic activities and, 
therefore, the plant biomass production. Woźniak et al. 

(2024) experiments showed that the enhanced P 
availability might result in increased yields and 
improved photosynthetic activity. 

The highest SPAD values were measured in the 27 
t ha-1 doses. The applied compost doses increased the 
leaves relative chlorophyll contents, photosynthesis 
and biomass production. Several pot and field 
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experiments have shown that organic fertilisers can 
generally enhance photosynthesis (Antolín et al., 2010; 
Manca et al., 2020). The SPAD index continuously 
increased along with the SSC doses up to 10% in the 
highest SSC treatment compared to the control plots 
(Figure 7). Strong correlation between SPAD index 
and soil AL-P2O5 was proved by correlation analysis 

(r=0.553, p=0.021) indicating the role of P in plant 
photosynthesis. The relationship between the plant 
shoot P content and AL-P2O5 was not significant at 
p<0.05 level (r=0.452, p=0.052), and the correlation 
between SPAD index and plant green weight was very 
weak (r=0.232, p=0.354). 

 

Figure 7. SPAD index and shoot P content at the ear emergence stage in the long-term sewage sludge compost experiment 

(Nyíregyháza, 2023) 

 

 

T1: 0 t ha-1; T2: 9 t ha-1; T3: 18 t ha-1; T4: 27 t ha-1 SSC 

 
CONCLUSIONS 

 
The long-term application of sewage sludge 

compost on acidic sandy soil was studied in this paper. 
The main question was whether it could be used as a 
valuable phosphorus source for the test plant or not? It 
can be concluded that sewage sludge compost applied 
long-term regularly increased the level of soil organic 
matter and pH in compost treated plots. These are the 
main parameters of soils affecting the availability of 
elements for plants, for instance, phosphorus. 
Moreover, the application of sewage sludge compost on 
acidic sandy soil, containing a high amount of 
phosphorus could be a good alternative to chemical 
phosphorus fertilisers which was proved by the 
increased ammonium lactate soluble phosphorous 
content of the soil. Application of sewage sludge 
compost affected the quantity of available phosphorous 
content of soil not only via its high phosphorous content 
but also via favorable changes of soil pH, too. The 
enhanced availability of phosphorus resulted in 

increased plant biomass production and a better 
physiological state of the rye crop. We found that the 
correlation of the SPAD index with the available 
phosphorous content of the soil is stronger than with the 
plant phosphorous content. The sewage sludge compost 
is a complex substance increasing the level of available 
phosphorus which positively influenced the 
photosynthetic activity and plant biomass of rye. In 
conclusion, the beneficial effects of composted sewage 
sludge proved that it can be used as a low-cost and good 
source of phosphorus for plants. 
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