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Abstract

In modern basketball, adequate player spacing is crucial for maximizing offensive efficiency
and improving shot quality. This paper proposes a novel approach to quantifying spacing
using graph theory. Each player is represented as a node, and the pairwise Euclidean
distances between them form the weighted edges of a complete graph. We compute several
spatial and structural metrics, including total spacing, convex hull area, minimum spanning
tree weight, and centrality measures. A case study on simulated tracking data illustrates the
applicability of the framework, revealing key patterns associated with successful possessions.
Results demonstrate that specific geometric and network-derived properties are strong
indicators of tactical efficiency, providing actionable insights for coaches, analysts, and sports
scientists.
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INTRODUCTION

In the modern era of basketball, offensive systems have evolved to prioritize floor
spacing as a fundamental tactical principle. Proper spacing enables efficient ball
movement, clear driving lanes, and higher-quality shot opportunities. As teams
increasingly adopt data-driven strategies, the need for precise and quantitative
assessments of spatial structure on the court has become more relevant than ever.
Despite the growing availability of player tracking data, existing studies often rely on
heuristic or visual evaluations of spacing, lacking consistent metrics or formal models.
Furthermore, much of the research is centered on outcome-focused analytics—such as
shot success probabilities—without a rigorous examination of the spatial configurations
that precede these events. Recent studies have begun to incorporate lineup-level
network structures (CERVONE et al.,, 2016; LI et al.,, 2025) and role-aware modeling
(LUCEY et. al,, 2014), yet a consistent framework for quantifying spacing dynamics is
still lacking.

In this paper, we introduce a novel graph-theoretic framework for representing and
analyzing player spacing. Each player is represented as a node in a complete, undirected
graph, with weighted edges corresponding to the pairwise Euclidean distances. From
this structure, we extract a set of interpretable metrics—including total spacing, average
pairwise distance, convex hull area, minimum spanning tree weight, and centrality
measures—that capture both geometric dispersion and relational structure among
players. Our approach facilitates frame-by-frame and possession-level analysis of team
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spacing, enabling more profound insights into offensive behavior and tactical efficiency.
By linking spatial structure to pos- session outcomes, the proposed framework
contributes a replicable and extensible tool for coaches, analysts, and sports scientists.

RELATED LITERATURE

The proliferation of player tracking technologies has catalyzed a new generation of
quantitative approaches to basketball analysis. Commercial systems such as SportVU
and Second Spectrum have enabled frame-level positional data to be applied in
evaluating players, analyzing ball movement, and predicting shot outcomes (RICO-
GONZALEZ et al, 2021; SCOFANO et al, 2024). While these advances are significant, much of
the literature has remained focused on isolated events—such as ball screens or shot
attempts—rather than the continuous spatial dynamics that occur across entire
possessions.

Several studies have attempted to quantify spacing using simple geometric constructs.
Convex hulls, for instance, have been employed to estimate the area occupied by
offensive players (SUPOLA et al.,, 2023) while entropy-based models have captured
distributional spread in positioning (ZHOU et al., 2025). Although informative, such
measures often neglect the relational structure of player interactions.

More recently, network-based methods have been introduced to capture tactical
relationships in basketball. Pass networks model players as nodes and passes as
directed edges, yielding insights into circulation patterns and centrality (RICO-GONZALEZ
etal,2021). However, these approaches typically emphasize on-ball actions and overlook
off-ball spatial behavior, which is equally critical in creating offensive advantage.
Extensions of network analysis have begun to examine lineup-level structures (FEWELL
et al., 2012; MILLER et al., 2014; CERVONE et al.,, 2016), centric spatial density measures
(BARRON et al., 2025; GUO et al., 2024), and role-aware predictive models (LUCEY et al,,
2014), highlighting a growing recognition of the complexity of spacing and tactical
interactions.

To our knowledge, there is still limited work that integrates geometric and graph-theoretic
methods to explicitly model spacing among players. Our contribution addresses this gap by
combining complete graph representations with spatial and structural metrics, delivering a
comprehensive and interpretable framework for evaluating spacing quality in basketball.

METHODOLOGY

Graph Representation

We model each offensive unit as a complete undirected graph G = (V, E), where each vertex
vi € V represents a player on the court, and each edge eij € E connects a pair of players (vi,
vj). The graph is constructed for every frame in which player tracking data is available. The
Euclidean distance between players weights each edge:

wij = (Xi —%7)% + (yi —y))?
Where (xi, yi) and (xj, yj) are the coordinates of players i and j, respectively. This formulation

ensures that the graph captures the instantaneous spatial relationships among all five
offensive players.
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Spacing Metrics

From the complete graph, we extract several spatial and structural metrics:

- Total Spacing: The sum of all edge weights in the graph, representing the
cumulative spatial separation among all players.

- Average Pairwise Distance: The mean of the ten unique inter-player
distances.

« Convex Hull Area: The area of the convex polygon formed by the five
players' positions, indicating overall space occupation.

* Minimum Spanning Tree (MST): The minimal set of connections linking all
players with the lowest total edge weight. A lower MST weight may indicate

tighter formations, while a higher value reflects dispersion.

« Centrality Measures: We compute degree, closeness, and betweenness centrality

for each player, reflecting their structural role in the spatial configuration.

- Average Shortest Path Length: The average of all shortest distances between

node pairs in the weighted graph.

Computational Pipeline

For each frame, the following steps are performed:

(e.

[EEN

. Parse player coordinates for the five offensive players.

2. Construct the complete graph and assign Euclidean distances as edge weights.

w

. Compute all spacing metrics listed above.

I

attempt, game clock).

This pipeline enables the development of scalable applications for large datasets
g., entire games or seasons) and supports both aggregate and possession-level

analysis.

Algorithm: Computation of Spacing Metrics

Require: Player coordinates {(x;,%:)s at frame
Ensure: Metrics vector 7,

1.

2;
3.

4.

Construct complete graph G, = (V, E) with

|V | = 5 and edge weights w; = x;,—5+¥i—5

Total Spacing: S: «— >, w;j;

Convex Hull Area: A; < CONVEXHULAREA

{(xisvi)}

Minimum Spanning Tree (M ST) <« MSTweight)
compute MSTWeight(G;)

. Centrality: compute degree, closeness,

betweenness for allv € V'

. Avg. Shortest Path: £, < AVGSHORTESTPATH

LENGTH(G,) on weighted G,

. Output: m < [Sy, d¢, A, Wiss, centralities, £ ]
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EXPERIMENTAL SETUP AND CASE STUDY

To demonstrate the applicability of our framework, we conducted a case study using
simulated tracking data that emulates realistic offensive formations. Each frame
consists of the (x, y) coordinates of five offensive players, sampled at a rate of 25 frames
per second.

For each frame, we computed the complete set of spacing metrics described in Section
4. Metrics were analyzed both individually (e.g., variation in convex hull area over
time) and in aggregate (e.g., mean total spacing per possession). To illustrate structural
behavior, we visualized the player graph with annotated edge weights and centrality
values.

A snapshot from a representative frame is shown in Figure 1, where players form a wide
offensive alignment with above-average total spacing and high convex hull area. This
configuration is indicative of a well-spaced possession.

.

Figure 1: Graph representation of a single frame. Nodes denote players, while edge labels denote
Euclidean distances (in feet, simulated data).

Additionally, we analyzed a sequence of 100 frames (4 seconds) from a mock possession.
As shown in Figure 2, spacing metrics exhibit dynamic variation, with peaks occurring
during moments of off-ball movement and corner spacing.

Spacing Metrics Over Time

1701 a

160/ h

Total Spacing

1500

I —— Total Spacin .
140 | | | | | | | [ 9 opacihe

1 2 3 4 5 6 7 8 9 10
Frame Number

Figure 2: Evolution of total spacing over 10 frames (example data).
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These results demonstrate the sensitivity of our metrics to tactical shifts and player
positioning, suggesting their value in automated analysis and coaching feedback systems.

DISCUSSION
The case study results underscore the expressive power and interpretability of graph-
based spacing metrics. Geometric indicators, such as total spacing and convex hull area,
consistently reflected the degree of offensive spread. At the same time, structural
measures, including minimum spanning tree weight and centrality, revealed how players
were interconnected within a formation. Together, these metrics offer complementary
insights into the quality of spacing.
Well-spaced possessions were typically characterized by players occupying maximally
distant positions while maintaining interconnectivity. Such configurations produced
higher total spacing, expanded convex hull areas, and more balanced centrality
distribution features that align with qualitative notions of tactical efficiency. These
findings align with recent work on lineup-level networks (CERVONE et al,, 2016) and
density-based spatial measures (GUO et al, 2024), highlighting the potential of
combining geometric and relational approaches.
An important strength of our framework is its ability to capture both instantaneous
snapshots and temporal dynamics. Frame-by-frame computation enables us to track
how spacing evolves during cuts, screens, and off-ball relocations, allowing for the
identification of tactical events that may otherwise go unnoticed in traditional statistics.
This dynamic perspective can support coaching applications by diagnosing breakdowns
in spacing and reinforcing effective formations.
Despite these advantages, several limitations must be acknowledged. The current model
operates in a purely spatial context, without integrating player roles, ball position, or
defensive alignment. These factors are critical in shaping offensive efficiency and should
be incorporated in future extensions (BOURGEAIS et al.,, 2025; LUCEY et al,, 2014).
Furthermore, the case study was based on simulated tracking data. While this choice
facilitated methodological prototyping under controlled conditions, applying the
framework to real-world datasets will require addressing challenges related to tracking
noise, occlusions, and player identification.
In summary, the proposed approach demonstrates strong potential as a foundation for
interpretable, data-driven analysis of basketball. By bridging geometric measures with
network-based insights, it opens opportunities for scalable applications in coaching,
scouting, and performance feedback, while also pointing toward rich avenues for future
research.

Limitations of The Study

While our framework provides a novel graph-based quantification of basketball spacing,
several limitations must be acknowledged. First, the analysis was conducted using
simulated tracking data rather than real game data. Although simulations enable
methodological prototyping under controlled conditions, they limit adaptability to real,
game-like situations where player behavior, defensive pressure, and contextual
constraints vary.

Second, the current design does not explicitly integrate the position of the ball or the
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tactical roles of individual players. Both contextual factors are crucial in shaping the
quality of spacing and offensive efficiency. Future extensions of this work should therefore
incorporate ball-centric metrics and role-aware attributes into the graph
representation.

Finally, the study does not account for defensive positioning or tactical responses from the
opposing team, which are key determinants of spacing effectiveness. Addressing these
aspects with real-world tracking data will be essential to validate and generalize the
proposed approach.

Practical Implications

The proposed framework has several practical applications for various stakeholders in
the basketball industry. For coaches, spacing metrics can serve as diagnostic tools
during training sessions, helping to identify breakdowns in floor balance and to design
drills that reinforce effective offensive structures. Performance analysts may integrate
these measures into scouting reports to compare lineup efficiency or to quantify the
impact of tactical adjustments on spacing dynamics across possessions.

Sports scientists can utilize this framework to explore the relationships between tactical
behavior and physical demands, thereby bridging the technical and physiological
aspects of performance. Finally, automated feedback and visualization systems could
leverage these metrics in real time, enhancing both coaching support and spectator
engagement.

Recommendations for Future Studies

This study opens multiple avenues for further research. First, extending the framework
to real-world tracking data will allow validation under authentic game conditions and
across different competition levels (e.g., professional leagues, youth academies). Second,
integrating the ball's trajectory, player roles, and defensive alignment will create a more
context-aware model of offensive efficiency. Third, combining graph-based metrics with
machine learning techniques could enable predictive models of possession outcomes or
automated classification of tactical patterns. Lastly, expanding the framework to other
invasion sports such as soccer or handball would test its generalizability and broaden
its applicability in the field of sports analytics.

CONCLUSION

This study introduced a novel graph-theoretic framework for modeling and quantifying
player spacing in basketball. By representing offensive units as complete weighted
graphs and extracting both geometric and structural metrics, we provide a systematic
approach to analyzing spatial organization during possessions. The results of our case
study suggest that spacing quality can be meaningfully captured through a combination
of total inter-player distances, convex hull area, and network-based measures such as
minimum spanning tree weight and centrality distributions. Beyond methodological
contributions, the framework offers several practical implications. Coaches and
performance analysts can use these metrics to monitor spacing dynamics over time,
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identify suboptimal formations, and design drills that promote efficient offensive
structures. Automated systems based on our approach could deliver real-time feedback
during practices, highlighting moments of poor spacing or successful spacing creation.
For sports scientists, the metrics provide interpretable indicators that bridge tactical
concepts with quantitative evidence, facilitating communication between analysts and
practitioners.

At the same time, the study highlights opportunities for future work. Integrating the
ball's position, player roles, and defensive alignment will provide a more context-aware
picture of offensive efficiency. Applying the framework to large-scale tracking datasets
from professional competitions will further validate its robustness and establish
normative baselines for optimal spacing under different tactical systems.

In conclusion, the proposed graph-based framework represents a step toward rigorous
and interpretable quantification of basketball spacing. By linking spatial structure to
tactical execution, it opens up pathways for data-driven decision-making in coaching,
scouting, and player development. It offers a methodological foundation that can be
extended to other invasion sports where space creation is central to success.
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