Search

Published After
Published Before

Search Results

  • Floral bud development, blooming time and fertility relations of some Romanian apricot varieties in Hungary
    41-43.
    Views:
    232

    Due to the geographical situation of Hungary the introduction of late ripening apricot varieties holds great interest. In apricot production floral bud development during winter, blooming time, and the fertilisation properties are important factors. These characters were studied in six late ripening Romanian apricot varieties (Callatis, Comandor, Litoral, Selena, Sirena, Sulmona) in Szigetcsép representing the northern site of the lowland growing area. During the mild winter of 1997/98 the dynamics of floral bud development in the Romanian varieties was a few days slower during the whole examination period compared to Gönci magyar kajszi. Their meiotic divisions occurred between 1 and 5 February. Next winter the meiotic division started later at 28 February, due to the cold weather. In these conditions the dynamics of bud development was similar in all the varieties. Averaged over seven years blooming of the Romanian varieties started 1-3 days later than in Gönci magyar kajszi. All the Romanian varieties showed self-fertility to some extent, however, application of other pollen donor sources is necessary for the safety of production, with the exception of Callatis.

  • The effect of day and night temperatures on apple skin colour formation
    21-25.
    Views:
    204

    The colour of fruits is considered to be an important quality indicator. Saleability greatly depends on how well covered the colour is of the specific type of fruits. It is a well-known phenomenon by growers that apples get nicer colours in one year while in other years the basically red and green colour cultivars can be differentiated only by morphological characteristic features. Cover colour is one of the phenometric variables and it is a well-known fact that significant differences can be experienced year by year. The experienced oscillation can be the cause of inappropriate water- and nutriment supply, however it can be the result of some kind of plant disease, extremely high or low temperature, setting rate above the average and outstanding fruit density. In the present examination it is postulated that the degree of cover colour is mostly influenced by day and night temperature. Therefore, our study aims to find out whether it is true or not. Cover colour belongs to those phenometric characteristic features, only the final value of which is taken into consideration; due to their nature of establishment or forming time it seems useless to follow closely the change in the time of vegetation. However, determining the start of colouring and knowing the dynamics of full colouring could carry very important information for growers. If it is possible to determine the curve describing the time change of colouring, we have a possibility to estimate it by means of enviroment variables. So it is also possible to model pigmentation in the future. Knowing this, colouring irrigation could be made more efficient in the future. For this, as a first step, it is inevitable to find out what the relationship is between the main meteorogical variables, namely day and night temperature and the difference between day and night temperature, and colour cover. In this study we summarize and show these interrelations.

  • Relations of phenometrical indices of apple fruits with weather variation in the assortment of varieties of an apple gene bank
    115-120.
    Views:
    195

    The purpose of phenometry is to examine the measurable parameters of the plants in order to follow up the consequences of weather processes. We should fi nd the reasons, why the diameter of fruits grows larger in one season and smaller in the next. Variation may occur as a response to insuffi cient provision of water or nutrients, but also because of pathological effects and of extremely high or low temperatures, moreover, of extraordinary heavy fruit load. There are phenometrical characteristics, which consider the fi nal consequences (density of fl owers, fruits set, drop of fruits), whereas other parameters could be followed up (size, length and width of fruits) as the dynamic components of growth. The quantitative parameters of growth are functionally related to each other, where the weather conditions, soil humidity and nutrients are on the input side, thus it is possible to model the growth of fruits as a function of the environment. Initially, the relations between the main weather variables and the phenometrical data have to be cleared. In the present study, the interactions between the mentioned phenomena are presented and numerically defi ned.

  • Microclimatic studies on different aged apple plantations
    7-11.
    Views:
    188

    The purpose of measuring parallel canopy and out of canopy microclimates was to find out in what extent climatic parameters measured in different aged canopis differ from each other and from the values characteristic to out-of-canopi areas. The importance of phytoclimatic researches seems to lie in the fact that if the reactions of fruit trees towards meteorological elements are continuously followed, we have the possibility to provide growers with information. These pieces of information are like defining the optimum time of phitotechnical interventions (summer pruning, sorting sprouts, thinning fruits, etc.), the necessity of applying mulching, defining the method and time of irrigation and applying plant protection activities. By means of phytoclimatic researches, it is possible to react to unfavourable meteorological impacts within a certain extent. It is also possible to successfully reduce the risks of late spring and early autumn frost damage, as well as the risks, content and measure of experienced heat and water stress conditions by finding out about the physical characteristics of the canopis' internal area.

  • Relationship beetwen the phenological features of pear cultivars and the main meteorological parameters in a gene bank with 555 pear
    59-63.
    Views:
    171

    The trees observed are grown at Ujfehert6, Eastern Hungary in a gene bank with 555 pear cultivars. Each of the cultivars was monitored for its dates of: the beginning of bloom, main bloom and the end of bloom and ripe phenophasis separately between I 984 and 2002. We analyzed the statistical features, frequency, distribution of these phenophasis and its' correlation the meteorological variables bet ween the interval. During this period the meteorological database recorded the following variables: daily mean temperature (°C), daily maximum temperature (0C), daily mini m um temperature (0C), daily precipitation (mm), daily hours of bright sunshine, daily means or the differences between the day-time and night-time temperatures (0C). For the analysis of data the cultivars have been grouped according to dates of maturity, blooming period as well as types of the seasons. Groups of maturity dates: summer ripe, autumnal ripening, winter ripe cultivars. Groups of blooming dates: early blooming, intermediate blooming, late blooming cultivars. At all the separated groups we analyzed the relationship between phenophasis and meteorological variables. During the 18 years of observation , the early blooming cultivars started blooming on 10-21 April, those of intermediate bloom date started flowering bet ween 20 April and 3 May, whereas the late blooming group started on 2- 10 May. Among the meteorological variables of the former autumn and winter periods, the winter maxima were the most active factor influencing the start dates of bloom in the subsequent spring. For the research of fruit growing-weather relationships we used simple, well known statistical methods, correlation and regression analysis. We used the SPSS 1 1.0 software for the linear regression fitting and for calculation of dispersions as well. The 1ables made by Excel programme.

  • Comparative analysis of sweet cherry cultivars on their ecological and biological indicators
    14-33.
    Views:
    140

    Sweet cherries are slightly more demanding than sour cherries. It is grown in warmer areas around the world. The relative ecological values obtained for the varieties obtained by extensive data collection differ slightly from the leading descriptions. Warm and demanding. The woody parts tolerate the cool of the winter quite well, the flower buds are damaged by the spring frosts. Its water demand is medium, in the case of 550 mm of annual rainfall, it adorns well on loose soils with good nutrient supply. Airy ground, neutral soil (pH 5.5-7.5) is optimal, but not suitable for areas with strongly calcareous, stagnant, stagnant groundwater. From the start of ripening, sudden rainfall, stormy winds and birds can cause great damage. Highlighting the world’s leading varieties in the study (Bing, Rainier, Chelan, Van and Burlat) (Iezzoni et al., 1991, Faust & Surányi, 1997) - according to relative ecological and biological values, the most popular cherries are mainly they differed from the other varieties based on TB and KB. Open pollination and with it, the productivity of the varieties exceeded the overall variety average precisely because of the breeding objectives. Certainly, the analysis of historical varieties, the oldest landscape and local varieties based on relative ecological and biological values can help further pomological-ecological research.