Search

Published After
Published Before

Search Results

  • Vegetative and micropropagation potential of Piper guineense (Schumach and Thonn)
    29-36
    Views:
    99

    The continuous loss of forest plants due to deforestation, and the increasing demand for Piper guineense because of its medicinal and food value, has put a permanent pressure on its population in the wild where it is collected. A method for conservation and mass propagation is therefore required. This research was undertaken to determine the optimal concentration of auxin needed for vegetative propagation and to investigate the potential of Piper guineense for micropropagation. The auxin optimization study of vegetative propagation was based on the use of two-nodal stem cuttings treated with five different concentrations of indole-butyric acid (IBA). Growth parameters such as the number of sprouted, rooted and survived cuttings among others were determined. To investigate the potential of Piper guineense for micropropagation, nodal explants were subjected to different sterilizing treatments using ethanol, NaOCl, mancozeb, streptomycin and Plant Preservative Mixture (PPM). The effect of plant growth regulators (PGRs) was tested on sterilized nodal explants using full strength Murashige and Skoog (MS) hormone-free media alone as control and MS media supplemented with PGRs (BA, NAA and KIN) at different concentrations and combinations. Significant differences were observed across the treatments for all growth parameters measured. However, 2000 ppm IBA significantly (p<0.05) influenced sprouting and rooting of the stem cuttings. Piper guineense explants have deep tissue contaminants, which cannot be eradicated by surface sterilization alone except double sterilization using PPM. On control media, neither shoot nor root response was observed while the highest percentage of induced roots was obtained from explants cultured on MS +1 mg/L BA + 0.25 mg/L NAA. Shoot induction was only achieved when BA was used alone and when subcultured on media supplemented with NAA, which generated roots.

  • Propagation of plum rootstocks by hardwood cuttings
    23-28.
    Views:
    124

    Vegetative propagation by hardwood cuttings is a very simple and cheap method for production of plum rootstocks. The aim of this study was to examine if this propagation technique is suitable for practice of three plum rootstocks and find the time or period when the percent of rooted cuttings is maximal. Based on our results, hardwood cuttings of the rootstocks tested have the rooting potential acceptable for practice, however, for Fehér besztercei in the previous literature leafy cuttings are recommended. Fehér besztercei reached 74.0% rooting, cuttings of Sainte Julien GF 655/2 rooted in as high percentage as 78.3%, and Marianna GF 8-1 had 88.3% rooted cuttings. Rooting potential of hardwood cuttings depends on more factors, one of them can be their dissimilar sensitivity for the diverse environmental circumstances at the different propagating dates, affecting through the internal biochemical changes that can be in relation with the differences in their dormancy.

    The cuttings of Marianna GF 8-1 take root easily, but in some years the conditions were less favourable for reaching maximal rooting. For taking cuttings the period from the beginning of October until December was optimal. For Fehér besztercei the optimal date of cutting collection was around the end of October, but in some years the rooting in the middle of December was also high. Sainte Julien GF 655/2 definitely rooted best in October. The treatments with different IBA concentrations in two years affected differently the rooting percentage. The rooting of Marianna GF 8-1 and Sainte Julien GF 655/2 is barely influenced by the different hormone dose in both years. Hardwood cuttings of Fehér besztercei rooted definitely better when treated with 2000 ppm IBA in comparison to untreated ones, while in 2001-2002 there was no difference between 2000 and 4000 ppm.

     


     

  • Propagation from root cuttings for black locust (Robinia pseudoacacia L.) improvement in Hungary: a review
    39-41.
    Views:
    253

    Black locust (Robinia pseudoacacia L.) is a valuable stand-forming tree species introduced to Europe approximately 400 years ago from North America. Today it is widely planted throughout the world, first of all for wood production. In Hungary, where black locust has great importance in the forest management, it is mainly propagated by seeds. But since the seed-raised plants present a great genetic variation, this type of propagation can not be used for Robinia’s improved cultivars. In the Hungarian black locust clonal forestry, propagation from root cuttings can be used for reproduction of superior individuals or cultivars in large quantities. However, this method demands more care than raising seedlings from seeds and can be applied with success in well-equipped nurseries.

  • Anatomical study of the bud union in „Chip" and „T" budded 'Jonagold' apple trees on MM 106 rootstock
    27-29.
    Views:
    350

    The traditional methods for vegetative propagation of apple and its varieties are the T-budding, and the winter grafting, but this latter way is a difficult and expensive procedure.

    In our experiment carried out in the Fruit Tree Nursery Soroksár, the healing process of chip- and T-budded apple trees 'Jonagold' on MM 106 rootstock was studied.

    The budding (T- and Chip-) was made in the first week of August, samples for microscope examination were taken monthly after this time until leaf fall.

    The investigated part of plants was made soft with 48 % HF (hydrogenfluoride), then cross and longitudinal section were made and examined by microscope.

    Based on analysis of microscope pictures in case of Chip-budding, it was established, that development had started quickly after budding on the rootstock and scion too. But the callus originated almost entirely from the rootstock tissue as new parenchyma cells fills the gap between the two components of graft (scion and stock), becoming interlocked and allowing for some passage of water and nutrients between the stock and the scion. This quantity of callus in case of T budding was under the scion buds larger, than the Chip-budded unions, where the thickness of callus mass is uniformly thick round the chip. The large mass of callus pushes the scion bud outwards from the shoot axis, which later results in a larger shoot-curvature above the bud union.

    Following this process on the Chip-budding it can be observed also, that a continuity of the cambium is established between bud and rootstock. Then the newly formed cambium started typical cambial activity, forming new xylem and phloem.

    Later the callus begins to lignify, and it is completed within about 3 months after budding.

     

  • Variability and differences of growth vigour in the set of 36 genotypes of apricot (Prunus armeniaca L.).
    30-34.
    Views:
    121

    Growth vigour of 36 apricot cultivars and new hybrids grafted on apricot seedling rootstock (Prunus armeniaca L.) was evaluated on the base of measurements of stem girth from the 411' to the 10th year after planting. There were differences in growth vigour of genotypes under study. In the evaluated set of genotypes the control cultivar 'Veecor may be classified as a genotype with below-average growth vigour. Only four genotypes (-Reale d'Imola-, Sanagian -Moldavskii krupnoplodnyl and 'LE-2385') were found with significantly higher growth vigour than that of control cultivar 'Veecot' in years of the end of experimental period. Two genotypes (Farmingdale', -LE-SE0-24') were found with significantly higher growth vigour only at the beginning of experimental period and one cultivar ('Vivagold-) with significantly lower growth vigour in the first four years. Genotypes with different growth vigour can be used in further breeding programmes and/or as components inhibiting or supporting the growth in indirect vegetative propagation. Within the whole experimental period, the rank of growth vigour of genotypes practically did not change. This was demonstrated by highly significant or significant coefficients of correlation existing between individual pairs of years (r=0.32+ to r=0.96++). As far as the time difference between years in individual pairs of years was higher, the correlation coefficients were lower. In individual years, variability of growth vigour was relatively low and ranged from 9.83 to 13.64%.