Search

Published After
Published Before

Search Results

  • The Hungarian pear germplasm as source of genetic variability for breeding programmes
    7-13.
    Views:
    203

    TheHungarian pear collection (Pyrus communis L.) consists of 423 genotypes distributed over seven genebanks inHungary. This is one of themost extensive collections of native and cultivated pears found in Eastern Europe and includes a wide range of genotypes with small size fruit (referred to as “Miniature pears”). Based on the in situ and ex situ measures taken by governmental and other institutions for fruit tree conservation in Hungary, an overview is given on some activities regarding areas of Pyrus collection and genebanks where pears are collected and grown. Descriptions of traits of miniature pears found in Hungarian genebanks for the interest of genetic characterization and breeding are presented.

  • Precision geoinformatical system of the pear gene-collection orchard
    43-50.
    Views:
    202

    The principle task of the sustainable development is the preservation of the genetic variety, which is similar challenge in the horticulture regarding the sublimation of fruit species. The breeders of the traditional fruit strains give stock to the sustenance diversity of the agro-environment on the species and landscape level. In 2009, hyperspectral images have been taken by AISA Dual sensors from the pear gene pool in Újfehértó, Hungary. The hyperspectral data cube (in the wavelength range of 400-2500 nm, with 1.5 m ground resolution) ensured possibility to make the spectral library of pear species. In the course of the simultaneously field work the spatial position and individual extent of all pear trees was defined to set up a detailed GIS data base. The water stress sensitivity of single species and the descriptive spectral curves were determined with common evaluation of the spectral and spatial data. Based on the unique methodology processing and the hyperspectral data base suitable strains can be chosen for agro-environment and let take adaptive stocks regarding climate change into the genetic grafting work. Furthermore we could determine and map the sparsely species in the region with the help of the hyperspectral data.

  • Irrigation modeling in a pear orchard
    75-79.
    Views:
    213

    The pear has large water requirement, therefore the planting of high density and grass covered pear orchards are needed irrigation
    conditions in Hungary. Drip irrigation spread in the orchards is due to the 90–95% of water use efficiency. One of the key role of irrigation is the
    proper determination of evapotranspiration and crop coefficients. As there is a considerable lack of information for different crops or fruits the
    Penman-Monteith method is used for the estimation of evapotranspiration, using CROPWAT 8.0. The research field was the genetic collection of
    pear at Újfehértó, in Hungary, which is situated in Nyírség meso-region. Our aim was to establish drip irrigation at this site. Based on the results
    of CROPWAT irrigation model the mean amount of the total gross irrigation is between 230–270 mm, within 3 irrigation interval regarding
    climatic and rainfall data of the last 10 years. In 2009, due to heavy drought, the total gross irrigation was 355,4mm/year on sandy soil calculating
    with 45% total available water depletion in 5 irrigation interval. The sizing of the irrigation system was set to the maximum 0.55 l/s/ha, which is
    6.3 l/tree/h. 6.3 l/tree/h can be carried out with a drip emitter having 16 mm wing lines diameter, 4 l/h water flow at 3 atm pressure.