Search

Published After
Published Before

Search Results

  • Fire blight (Erwinia amylovora) resistance in apple varieties associated with molecular markers
    53-57.
    Views:
    221

    The invasive bacterial disease fire blight, caused by Erwinia amylovora has the potential to destroy fruit tree orchards all over Europe. Effective plant protection methods are lacking in many countries, highlighting the increasing importance placed on identification of germplasm with heritable disease resistance. Recent l y. a promising QTL (quantitative trait locus) was identified on linkage group 7 in the apple cultivar 'Fiesta· which is derived from ·cox's Orange Pippin' . I n the present study, 144 Swedish and foreign apple cultivars were analysed with the SCAR markers AE I 0-375 and GE-8019. which flank-. this QTL. Twenty-nine of the analysed cultivars had both markers. 78 had either AE I 0-375 or GE-8019, and 37 cultivars did not carry an) of the two markers. Seventeen cultivars. 7 with both markers and I 0 not having either of the two markers, were then inocoluted with the bacterium in a 4uaran1i ne greenhouse test. Cultivars carrying both DNA markers were significantly less susceptible than cultivars lacking the markers, P<0.001. Cultivars that were most resistant had both markers and had 'Cox· in their pedigree. Unrelated cultivars with the markers may still lack the QTL.

  • Development of microsatellite markers for Rhodiola rosea
    37-42.
    Views:
    199

    Rhodiola rosea L. is an important adaptogen medicinal plant. In this study two new microsatellite markers were developed. The assessment of the genetic diversity of R. rosea has recently started with molecular markers, but only a few species-specific microsatellite markers have been published so far. However the small number of markers allows only a limited insight into the genetic variability of the species therefore the aim of our work was to develop new microsatellite markers for R. rosea with a microsatellite enrichment library technique. Genomic DNA was cleaved with an endonuclease enzyme followed by adaptor ligation and PCR amplification. DNA fragments that contained microsatellites were first isolated using a biotin-streptavidin linkage based magnetic selection and then cloned into plasmids. Out of forty-three sequenced clones three contained  microsatellites, in these cases primers were designed for the amplification of the microsatellite repeats. The newly developed primer pairs were tested on individuals from distant R. rosea populations and the variability of the amplified fragments was estimated by fragment-length analysis. The locus RhpB14a was found to be monomorphic while RhpB14b and RhpB13 were polymorphic. As a result of the present study, two novel variable microsatellite loci were identified in the genome of R. rosea.

  • The use of SSR markers in family Rosaceae
    29-32.
    Views:
    117

    The identification of plant species and study of their genetic relatedness is an important object of plant genetics. The Rosaceae family contains a lot of economically important fruit, ornamental, and wild plant species. The microsatellite markers have been proven to be an efficient tool for description of the genetic relatedness among varieties and species. Their evolutionary conserved regions enable them to differentiate among various accessions. This article intends to show proceeded identification and characterization projects on Rosaceae species by using SSR markers. The article presents sources of already published primer sequences. The use of already published primers can highly reduce the cost and duration of this kind of researches.

  • Molecular identification of old Hungarian apple varieties
    37-42.
    Views:
    241

    Altogether 40, mainly old Hungarian apple varieties were screened with six previously described microsatellite markers. A total of 71 polymorphic alleles were detected (average 11.8 alleles/locus) and the heterozygosity of markers averaged very high (0.8). The genetic variability among the genotypes proved to be so remarkable that as few as three markers from the applied six were enough to distinguish between the 40 varieties. This was also confirmed by the cumulative probability of obtaining identical allele patterns for two randomly chosen apple genotypes for all loci, which value was quite low: 2.53 x 10-5. The molecular identification of these genetically very different old apple genotypes could be very useful in future breeding programs.

  • Resistance Gene Analogs (RGA) as a tool in fruit tree's breeding
    7-15.
    Views:
    171

    Breeding for pest and disease resistance comes as a major objective behind the fruit traits. To increase the effectiveness of fruit resistance breeding application of the Marker Assisted Selection ( MAS) is advantageous. For generating molecular markers which enable the following of interesting traits basically two methods are available: targeted marker design based on conservative region of already known Resistance ( R) gene sequences or randomly generated markers. The creation  and the application  of  these homology  based  markers  are the object of this review in  the main  temperate zone  fruit species.

  • Molecular diversity of Hungarian melon varieties revealed by RAPD markers
    11-13.
    Views:
    116

    RAPD markers were used to reveal genetic diversity between nine varieties of Cucumis melo L. and to identify the studied varieties. Of the 60 primers tested 12 primers produced polymorph patterns. A set of 4 primers was sufficient for distinction the nine investigated melon varieties.

  • Molecular analysis of strawberry cultivars using RAPD, AP-PCR and STS markers
    24-28.
    Views:
    119

    Seventeen strawberry (Fragaria x ananassa Duch.) cultivars representing the national list of Hungary, were subjected to RAPD, AP—PCR and STS analysis. Of the 31 decamer and oligomer primers tested 26 primers produced polymorphic patterns. 45 polymorphic fragments were analysed, ranging between 200-2800 by in size. Based on the data, similarity coefficients (Jaccard index and Simple matching coefficient) were calculated, and dendrograms were constructed using the unweighted pair group method of arithmetic averages (UPGMA). The dendrograms only partly reflect the known pedigree data. Specific RAPD markers were identified for cultivars F5, Pocahontas and Rabunda.

  • Ultrastructural and biochemical aspects of normal and hyperhydric eucalypt
    61-69.
    Views:
    209

    Hyperhydricity was observed throughout in vitro multiplication phase of a Eucalyptus grandis clone. Ultrastructural approach of tissue and cell differentiation, izoenzyme patterns, binding protein (BiP) expression, and pigment content were performed. Hyperhydric tissues showed a reduction in cell wall deposition, reduction of membranous organelles, higher cell vacuolation, and more intercellular spaces than its normal counterpart. Additionally, several vesicles were present in hyperhydric cells suggesting the occurrence of organelle autophagy by autophagic vacuole. Lower pigment content, intercellular spaces on the epidermis and the induction of a molecular chaperone (BiP) were observed in hyperhydric phenotype. Evidences of schizolysigenous process of intercellular space formation are compatible with a stress condition. Although plastoglobulli were observed in normal and hyperhydric chloroplasts, they were more evident in the normal ones. Abnormal stomata also reflected a disruptive situation and morphogenesis disturbances which would difficult plant acclimatization. Further observation of the epidermis ultrastructure allows us to conclude that the presence of intercellular spaces on its surface may be constraining the recovery and development of hyperhydric plants. Similarly to BiP, other proteins such as esterase (EST), acid phosphatase (ACP), malate dehydrogenase (MDH) and peroxidase (PDX) are possible to be used as stress markers in in vitro conditions. Our results confirm earlier findings about negative effects of hyperhydricity on in vitro plant morphogenesis and ultrastructure, which in eucalypt is associated with a stressful condition contributing to lower propagation ratios.

  • Molecular characterization of apricot (Prunus armeniaca L.) cultivars using cross species SSR amplification with peach primers
    53-57.
    Views:
    196

    Apricot takes an important place in Hungarian fruit production. Considering morphological characteristics of apricots it was concluded that the genetics background of European cultivars is very limited. Molecular markers and their use for genotyping have revolutionized the identification of cultivars. In a classic apricot breeding program, it is important to be able to establish unique DNA profiles of selections to identify them unambiguously and to determine their genetic relationship. Presently SSR is far the most frequently performed technique for genetic diversity studies. In this study there were used peach and apricot primer pairs from four different sources in order to examine microsatellite polymorphism among cultivars and investigate relationships among them. The possibility of cross species amplification among different Prunus species using SSR primers allowed us to use primers developed in peach to study genetic diversity in apricot. In this work, 90% of the primers used were able to amplify SSRs in apricot and more than half of them were polymorphic. With the 10 primer pairs utilized were proven to be sufficient to set unique fingerprint for several cultivars studied. The obtained dendrogram classified of the 45 cultivars included in this study into two major groups and several subgroups.

  • New simple and efficient method of DNA isolation from pear leaves rich in polyphenolic compounds
    21-24.
    Views:
    113

    This study aimed to establish a new protocol for DNA isolation from the Pyrus genus to get high quality DNA that is suitable for the generation of molecular markers, such as RAPD and AFLP. This method is based on modified CTAB extraction procedure (Aldrich & Cullis, 1993). For isolation of high-quality DNA we used copper (II) acetate treatment that enabled fixation and removing of tannins, present in abundance in Pyrus. DNA yield from this procedure is high. DNA is completely digestible with restriction endonucleases and amplifiable in the PCR, indicating freedom from common contaminating polyphenolic compounds.

  • Mutation induction in sweet basil (Ocimum basilicum L.) by fast neutron irradiation
    30-38.
    Views:
    307

    Basil species are highly sensitive to exterior environmental conditions and its consequences lead to great economic and agronomic losses. In this research, a mutation method was optimized out for creating a new variety of Ocimum basilicum L., which could tolerate the extreme/extraordinary climatic circumstances or biotic stresses, such as fungal diseases. Fast neutron irradiation was performed on the Hungarian commercial variety seeds with doses of 5 to 60 Gray and grown into fully developed plants. Numerous phenotypical changes like deformed congestion, leaf mutation, and low growth occurred, especially at higher dosages. Then to confirm whether the plantlets had mutation or not, and to detect the molecular variation and relationship, fingerprinting profiles of the developed mutant regenerants and donor plant have been assessed using ISSR markers. 115 loci were yielded, ranging from 0.2 to 1.5 kb, out of which 110 loci were polymorphic in nature, representing 95.6% polymorphism. The most suitable primer to determine the genetic diversity within the Ocimum species was the UBC-856 with 0.42 PIC and 4.1 MI values.