Search

Published After
Published Before

Search Results

  • Rootstocks for Cherries from the Department of Fruit Science Budapest
    63-66.
    Views:
    160

    Cherry rootstock breeding started at the Department of Fruit Science, SSU Budapest by the late 50-s and the activity can be divided into three main groups. In the first stage the activity was focused on collection of native mahaleb cherry (Prunus mahaleb L.) varieties lead by L. Sebők. After evaluation in the nursery and orchard tests there are four promising rootstock cultivars selected from this material: 'Korponay' used as self fertile seed tree, its seedlings are recommended for sour cherries. The mahaleb varieties 'Bogdány' (vigorous), 'Egervár' and 'Magyar' (medium vigour) are propagated by cuttings. The next project has started in 1979 with the aim to select self fertile mahaleb seed trees producing homogeneous seedling populations with reduced vigour. Inbred populations from isolated flowering self fertile trees were produced and planted out in 1980. The inbreeding of 'Korponay' self fertile P. mahaleb variety resulted in specimens with different fruit colour (yellow, red, black), fruit shape and size. From among them self fertile trees were selected with various growth characteristics. Seedlings of that self fertile mother trees (S2 population) were tested in seedbed, they showed homogeneous phenotype characteristics as liners in the nursery. As rootstock of 'Érdi bőtermő' sour cherry in the orchard most of the S2 lines proved to be less vigorous in comparison to SI popuplations. 'Érdi bőtermő' trees budded on certain S2 lines in the orchard are more productive than those on S1 ('Korponay' seedling). Characteristics of the S2 generation as seed tree were studied as well. We expect to get morphologically homogeneous seedling populations with different growth vigour and good productivity in the later inbred generations. In the last couple of decades the research activity concerning ground-cherry and its hybrids resulted in dwarfing rootstocks. Prunus fruticosa Pall. hybrids from the natural flora of Hungary were collected and artificial hybrids were created between P. fruticosa and mahaleb cherry. Most of them are in the initial tests, only one of them is before registration, named 'Prob', which is a dwarf rootstock for sweet cherry. By the screening of new hybrids medium vigorous or semi dwarfing and precocious rootstocks seem to be promising for the cherry industry.

  • Self-(in)compatibility in sour cherry (Prunus cerasus L.). A minireview
    117-120.
    Views:
    144

    Sour cherry (Prunus cerasus L.) is an allotetraploid species derived from hybridisation of the diploid sweet cherry (P avium L.) and the tetraploid ground cherry (P. fruticosa Pall.). Although numerous self-incompatible cultivars exist, the most sour cherry cultivars are self-compatible, which might be due to their tetraploid nature. This review is dedicated to show the limited information on the genetics of self-incompatibility in sour cherry accumulated during the last five years. Two different hypotheses (genomic arrangement of the alleles or the accumulation of non-functional S-haplotypes) are discussed. Heteroallelic sour cherry pollen was shown to be self-incompatible, which is counter to the Solanaceae where heteroallelic pollen frequently self-compatible due to a kind of competitive interaction between the two different alleles. This review highlights some inconsistencies in the hope that clarification will be achieved in the near future.

  • Analyses of Hungarian sour cherry germplasm with simple sequence repeat markers
    27-31.
    Views:
    198

    Twenty-four sour cherry cultivars (genotypes), belonging to four cultivar groups were fingerprinted using microsatellite markers. All genotypes have been arisen from the Carpathian basin, which could be secondary gene centre of sour cherry, since its progenitor species, ground cherry and sweet cherry overlap here. Five SSR primer pairs, earlier used for fingerprinting Turkish sour cherry germplasm were tested. None of the five primer pairs showed any polymorphism within the cultivar groups. The primer pairs were able to distinguish between the cultivar groups. The Oblacsinszka and the Cigánymeggy cultivar groups were the most difficult to separate, while the Pándy cultivar group was the most distinguishable.

  • Development in intensive orchard systems of cherries in Hungary
    76-86.
    Views:
    290

    High density central leader systems, the so called "spindle trees" are spreading in intensive stone fruit orchards established for hand picking in Hungary. Results of Brunner (1972, 1990) and Zahn (1967, 1996) inspired the researchers to implement their theories into practice under our climate and special soil conditions. For sweet cherry it is essential to apply an orchard system appropriate for hand picking because of the European market requirements. In intensive sweet cherry orchards two new training and orchard systems are developed and adapted to environmental conditions in Hungary based on previous inventions. The first step of the development is represented by modified Brunner-spindle, which applies the delayed heading of the central leader and the sectorial-double-pruning system from Brunner (1972), resulting intensive orchard of 600-800 trees/ha density, planted on standard vigour rootstocks. Modified Brunner-spindle trees are developed with a central leader and wide-angled branches on it. Light bearing wood is positioned on the central leader and wide-angled branches. During training, shoots for branches are bent or a sectorial double pruning is used. The growth of central leader is reduced by delayed heading, and the strong upright shoots are pinched in summer. Based upon tree size spacing of 5 m between row and 2.5-3 m between trees is recommended, tree height is around 3.5-4 m. This training system is useful for hand-picking; 60-70% of the crop can be harvested from ground. Modified Brunner-spindle is suitable for either standard or moderate vigorous rootstocks. The cherry spindle is an intensive orchard planted with 1250-2300 trees per hectare and it is recommended for sweet and sour cherries on semi dwarf to vigorous rootstocks, depending on soil fertility and quality. Trees are 2.5-3.5 m high, 75-80% of the crop can be harvested from the ground. Permanent basal scaffolds are developed on the basis of the canopy to counteract the stronger terminal growth. The tree is headed only once, after planting, from the following year the central leader grows from the terminal bud. The central leader developed from the terminal bud results moderated growth in the upper parts of the tree head. The strong upright shoots that may develop below the terminal bud are pinched to 3-4 leaves in the summer or removed entirely. The weaker, almost horizontal shoots growing from the central leader form fruiting twigs in the following year if their terminal bud is not removed. Brunner's double pruning is used only once or twice on the permanent basal branches because of its good branching effect. Trials on various rootstocks are running to find optimum spacing and fruiting wood management. The training and pruning guidelines are discussed in the paper. The average crop of bearing years is around 20-30 t/ha depending on site and cultivars. This new system is spreading in Hungary, around 70 ha sweet and sour cherry orchards are trained according to our guidelines.

  • Spring frost effects on 30 sweet cherries varieties grown in North Italy
    33-37.
    Views:
    166

    After a spring frost occurred in second half of March 2008, with temperatures below 0°C for 8 days consecutively and an absolute minimum of -5.5°C, a lot of observations have been made on the sweet cherry flowers damages. In three different orchards “Italian palmetta” trained on grassing ground soil, the percentage of the flowers killed by frost, was detected and recorded considering the different genotypes and flowers height from the ground. Furthermore, in one orchard only it was possible to find relationship between flowering stage and frost damage. The results clearly confirm our previous works about the highest mortality of the flower in the upper part ( > 1.50 m) of the canopy and in the full bloom open flowers. So, in this area, the easiness of agronomic operations, like pruning and, especially, fruit harvest, due to the crown proximity to the ground, is cancelled by the frequency of spring frost.

  • Comparative analysis of sweet cherry cultivars on their ecological and biological indicators
    14-33.
    Views:
    140

    Sweet cherries are slightly more demanding than sour cherries. It is grown in warmer areas around the world. The relative ecological values obtained for the varieties obtained by extensive data collection differ slightly from the leading descriptions. Warm and demanding. The woody parts tolerate the cool of the winter quite well, the flower buds are damaged by the spring frosts. Its water demand is medium, in the case of 550 mm of annual rainfall, it adorns well on loose soils with good nutrient supply. Airy ground, neutral soil (pH 5.5-7.5) is optimal, but not suitable for areas with strongly calcareous, stagnant, stagnant groundwater. From the start of ripening, sudden rainfall, stormy winds and birds can cause great damage. Highlighting the world’s leading varieties in the study (Bing, Rainier, Chelan, Van and Burlat) (Iezzoni et al., 1991, Faust & Surányi, 1997) - according to relative ecological and biological values, the most popular cherries are mainly they differed from the other varieties based on TB and KB. Open pollination and with it, the productivity of the varieties exceeded the overall variety average precisely because of the breeding objectives. Certainly, the analysis of historical varieties, the oldest landscape and local varieties based on relative ecological and biological values can help further pomological-ecological research.